
Microbiological approaches for the treatment of spent catalysts

Artículo recibido el 17 de septiembre del 2019.
Artículo aceptado el 18 de marzo del 2020.  

ARTÍCULO DE REVISIÓN

Abstract
Homogeneous and heterogeneous catalysts are widely used for diverse industrial processes in order to produce clean 
fuels and many other valuable products, being spent hydroprocessing catalysts the major solid wastes of the refinery 
industries and the main contribution to the generation of spent catalysts. Because of its hazardous nature, the treatment 
and metal recovery from this kind of residues has gained increasing importance, due to the depletion of natural resources 
and environmental pollution. Although there are techniques already available for these purposes, they generate large 
volumes of potentially risky wastes and produce the emission of harmful gases. Thus, biotechnological techniques 
may represent a promissory alternative for the biotreatment and recovery of metals contained in spent catalysts. 
To this end, diverse microorganisms, comprising bacteria, archaea and fungi, have been analyzed to characterize 
their metal removal abilities from spent catalysts. A broad scenario about the advances regarding to the management 
and traditional treatment of spent catalysts is presented, followed by a detailed overview of the microbiological 
biotreatment approaches reported to date. 
Keywords: spent catalysts, biotreatment, biometallurgy, biolixiviation, metal bioremoval.

Enfoques microbiológicos para el tratamiento de catalizadores agotados

Resumen 
Los catalizadores, homogéneos o heterogéneos, son ampliamente utilizados para una gran variedad de procesos 
industriales, con el fin de producir combustibles limpios y muchos otros productos valiosos, siendo los catalizadores 
agotados provenientes del hidroprocesamiento los mayores residuos sólidos de la industria de la refinería y la 
contribución principal a la generación de catalizadores agotados. Debido a su naturaleza peligrosa, el tratamiento y 
la recuperación de metales de este tipo de residuos han ganado cada vez más importancia, debido al agotamiento de 
los recursos naturales y a la contaminación ambiental. Aunque ya existen técnicas disponibles para estos fines, éstas 
generan grandes volúmenes de desechos potencialmente peligrosos y producen emisiones de gases nocivos. Por lo tanto, 
las técnicas biotecnológicas pueden representar una alternativa promisoria para el biotratamiento y la recuperación 
de metales contenidos en los catalizadores agotados. Con este fin, se han analizado diversos microorganismos, que 
comprenden bacterias, arqueobacterias y hongos, capacitados para facilitar la eliminación de los metales contenidos 
en estos catalizadores. En esta revisión se presenta un amplio escenario sobre los avances con respecto al manejo 
de los catalizadores agotados y su tratamiento tradicional, seguido de una descripción detallada sobre los enfoques 
microbiológicos reportados hasta la actualidad.
Palabras clave: catalizador agotado o gastado, biotratamiento,biometalurgia, biolixiviación, bioremoción de metales. 
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atalysts are broadly used in the chemical and oil 
industries to upgrade diverse types of important 
processes. These industrial catalysts regularly 
consist of metals supported on porous materials 

Introduction

C
like alumina or silica. During operations, these catalysts 
deactivate with their periodical use (Jong, Rhoads, Stubbs & 
Stoelting, 1992), through structural changes, poisoning, or the 
deposition of external materials, and then sent to on-site or 
off-site regeneration plants. However, the regeneration of the 
spent catalysts that are discarded from industrial processes 
can only be performed for a limited number of times and 
it is only possible for some of these residues. Thus, when 
regeneration is not possible because the catalyst can no longer 
perform its original duty, is referred to as “spent catalyst”, and 
is considered as a solid waste.

Catalysts are used in a broad range of industrial processes and 
in elevated amounts, commonly to produce clean fuels and 
many other valuable products (Marafi, Stanislaus &Furimsky, 
2010; Stanislaus, Marafi & Rana, 2010). It has been reported 
that spent hydroprocessing catalysts are the major solid wastes 
of refining industries, representing the main contributors 
to the generation of spent catalysts (Liu,Yu & Zhao, 2005), 
being annually produced between 150,000-170,000 tonnes 
of spent hydroprocessing catalysts worldwide (Chiranjeevi, 
Pragya, Gupta, Gokak & Bhargava, 2016), and the amount 
will continue to increase as new hydrotreatment processes 
are needed to meet the growing demand. Spent catalysts have 
been classified as hazardous residues by the Environmental 
Protection Agency (EPA) in the USA due to their dangerous 
self-heating liability and their highly toxic content (Eijsbouts, 
Battiston & van Leerdam, 2008), caused by the simultaneous 
presence of metals and other non-metallic elements, such as 
Al, V, Mo, Co, Ni, As and Fe, and elemental sulfur, carbon 
and oils, respectively (Mishra, Kim, Ralph, Ahn & Rhee, 
2008). Besides, the metals contained in spent catalysts can 
be leached after disposal due to water action, generating 
pollution dispersion (Marafi & Stanislaus, 2007; 2008a,b), 
and/or may react with other environmental components like 
oxygen, which can cause the release of toxic gases such 
as H2S, HCN, or NH3 (Noori Felegari, Nematdoust Haghi, 
Amoabediny, Mousavi & Amouei Torkmahalleh, 2014).

Spent catalysts can be moderately regenerated to be re-used as 
catalysts for other processes (Kim & Shim, 2008a,b; Shim & 
Kim, 2010; Bitemirova, Alihanova, Spabekova, Shagrayeva 
& Ermahanov, 2015), treated before final disposal for the 
recovery of valuable metals, or directly disposed in landfills 
as solid wastes, although this latter option may be the 
least recommended one, due to environmental constraints. 
Considering the worrying exhaustion of natural resources and 
the elevated environmental pollution nowadays, the recovery 

of metals from spent catalysts has been under the scope in the 
last years, as they represent a source of commercially valuable 
metals, offering a viable alternative for the recovery of the 
metallic components contained therein, in order to reduce the 
amount of disposed waste and promoting the conservation of 
natural resources.

Recycling of spent catalysts
There have been suggested interesting options for the usage 
of spent catalysts as raw materials for the production of other 
valuable products, which may also represent an attractive 
option for the recycling (instead of disposal) of these types 
of residues. Diverse materials have been prepared using spent 
catalysts, such as abrasive components for the ceramic and 
refractory industries (Zeiringer, 1979), aggregates for concrete 
production (Stanislaus, Gouda & Al-Fulaij, 1998) or in road 
bases and sub-bases for construction aplications (Taha, Al-
Kamyani,Al-Jabri, Baawain & Al-Shamsi, 2012), production 
of refractory bricks and cement (Vargas et al., 2018), as a 
component in asphalt mixtures (Yoo, 1998), anorthite glass–
ceramics for application as an electrical insulating material 
(Su, Chen & Fang, 2001), as a wastewater filtering agent 
(Sanga & Nishimura, 1976), in combination with activated 
sludge for biological treatment of wastewater from municipal 
and industrial sources (Liles & Schwartz, 1976) and properly 
as catalysts for other applications, including the reduction of 
nitrogen oxides (Choi, Kunisada, Korai, Mochida & Nakano, 
2003). However, most of the processes regarding these 
recycling options are still under study in a laboratory stage 
(Marafi & Stanislaus, 2008a).

Traditional techniques for metal extraction 
from spent catalysts
For the recovery of precious metals, plasma technologies 
have been assessed in a wide range of spent catalysts, 
especially to recover Pt group metals from these high 
metal content residues generated in both automotive and 
diverse industrial processes, where the same metal recovery 
procedure can be used to deplete the hazardous properties 
of the spent catalyst while recovering the metals contained 
therein for their reutilization (Rui,Wu, Ji & Liu, 2015). Also, 
hydrometallurgical (treatment in organic and inorganic 
aqueous medium), pyrometallurgical (heating, roasting), and 
chelating agent methods for the treatment of spent catalysts 
and metal recovery are available, and were reviewed in 
detail by Akcil, Vegliò, Ferella, Okudan &Tuncuk (2015). 
Although these conventional approaches confer an economic 
advantage, they generate large volumes of potentially 
hazardous wastes and emission of harmful gases (Llanos & 
Lacave, 1986), which involve high costs and environmental 
risks. Thus, new alternatives are needed to develop eco-
friendly solutions associated with the treatment of this kind 
of residues (Marafi & Stanislaus, 2008a,b). 
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Microbiological approaches for the 
treatment of spent catalysts
As it has been previously sustained, biotechnological methods 
may represent a promising alternative for the treatment of 
spent catalysts (Noori-Felegari, et al., 2014), due to important 
microbial properties, like their ability to survive and adapt 
to elevated metal concentrations, and also to transform solid 
non-essential metals into soluble and extractable elements 
that could be recovered (Yang, Qi, Low & Song, 2011; Sahu, 
Agrawal & Mishra, 2013). In this regard, research has also 
been performed to develop bio-approaches for the mining 
industry. To date, several bio-techniques comprised under 
the term of "biohydrometallurgy" have been investigated, 
standardized, or even industrially exploited (Mishra, Kim, 
Ralph, Ahn & Rhee, 2007), including: a) the removal of metals 
contained in low-grade ores or low-grade mineral resources 
(Brombacher, Bachofen & Brandl, 1997; Olson, Brierley & 
Brierley, 2003) and residues (Krebs, Brombacher, Bosshard, 
Bachofen & Brandl, 1997) by the action of microorganisms, 
b) the recovery of these metals, and c) the subsequent metal 
purification steps.

Bioleaching is one of the techniques included in biohydro-
metallurgical applications (Asghari, Mousavi, Amiri 
&Tavassoli, 2013), which enables metal recycling by processes 
similar to the ones found in the natural biogeochemical cycles 
(Brierley, 2008), being demonstrated its suitability for the 
successful removal of metals contained in diverse kinds of 
solid industrial wastes, like fly ash (Burgstaller & Schinner, 
1993; Bosshard, Bachofen & Brandl, 1996; Brombacher et al., 
1997; Xu, Ramanathan & Ting, 2014), sewage sludge (Chartier 
& Couillard, 1997), spent batteries (Cerrutti, Curutchet & 
Donati, 1998), electronic scrap materials (Brandl, Bosshard 
& Wegmann, 2001), and spent catalysts (Santhiya & Ting, 
2005; Marafi & Stanislaus, 2008b). Besides, bioleaching has 
also been applied for the bioremediation of contaminated soils 
(Chen & Lin, 2004; Gadd, 2004) and sediments (Beolchini, 
Rocchetti, Regoli & Dell’ Anno, 2010b). It is important 
to mention that bioleaching approaches can be considered 
as more eco-friendly techniques, whose development is 
important to attenuate the negative environmental impacts of 
the traditional methods applied to date (Mishra et al., 2007), 
and have been gaining importance due to their following 
demonstrated advantages in comparison to conventional 
processes of metal extraction: besides they represent 
environmental-friendly technologies, they also involve 
lower costs and lower energy requirements, are simpler 
and cheaper to perform and maintain, they may operate at 
environmental pressure and non-excessive temperatures, they 
present higher efficiencies in terms of heavy metal removal 
and non-strict requirements of raw material composition, 
they have been successfully applied at industrial scale for 
low grade ores (concentration of metals < 0.5 wt %) and are 
applicable for highly contaminated materials. In addition, 

these approaches do not generate hazardous emissions (Akcil 
et al., 2015). Above all, no chemical reagents are needed for 
the bioleaching process, as these processes are biologically 
induced with no requirement of a continuous delivery of 
other raw materials to the processing plant, which implies a 
reduction in the environmental and economical impacts, as it 
has been stated the diminished production of carbon emissions 
due to transportation, and also that raw materials represent a 
significant part (52.2%) of chemical leaching costs for spent 
hydrogenation catalysts (Yang et al., 2011). It has also been 
established that carbon emissions have the major contribution, 
together with energy, on the impact of these chemical leaching 
procedures, in terms of global warming potential (Beolchini, 
Fonti, Dell’Anno, Rocchetti &Vegliò, 2012). 

During bioleaching processes, the leached and recovered 
highly valuable metals may be recycled and re-used as 
secondary raw materials (Bosshard et al., 1996; Brandl et al., 
2001). Thus, a lot of the large-scale bioleaching industrial 
facilities are located in developing countries, mainly due to 
two important factors: 1) the significant mineral reserves 
and mining industries they have; and 2) the simplicity and 
low-cost requirements of bioleaching techniques (DaSilva, 
1981; Gentina & Acevedo, 1985; Warhurst, 1985; Acharya, 
1990; Acevedo, Gentina & Bustos, 1993; Acevedo, 2002). 
This is the case of Mexico, and also of countries like Chile, 
Indonesia, Peru and Zambia. In the specific case of Mexico, 
the company Peñoles S.A. has established an integrated 
process consisting of bioleaching, solvent extraction and 
electrowinning, successfully generating 500 kg of Cu per day 
(Acevedo, 2002).

Microorganisms used for the biotreatment 
of spent catalysts
During the growth of microorganisms, some formed 
metabolites may be useful to perform the extraction of 
valuable metals from waste materials, due to their acidic 
nature or their complex formation capability. As illustrated 
in Figure 1, the ability of diverse microorganisms to remove 
and leach metals contained in solid materials may be due 
to: a) the transformation of organic or inorganic acids;                 
b) oxidation and reduction reactions; and c) the production 
of complexing agents. Metals can be leached either directly, 
by the physical contact between microorganisms and 
solid materials, or indirectly, by the bacterial oxidation 
of an element (for example Fe2+ to Fe3+), which catalyses 
metal solubilization as an electron carrier (Krebs et al., 
1997). Specifically, diverse microorganisms have been 
analyzed to determine their metal removal capabilities from 
spent catalysts, comprising bacteria, archaea and fungi. 
The compiled results reported in this respect have been 
previously addressed by Lee & Pandey (2012), Srichandan, 
Kim, Gahan & Akcil (2013), Mishra & Rhee (2014) and 
Akcil et al. (2015). Additionaly to previous compendiums, 
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Table I presents an upgrade of the results reported to date. 
Furthermore, the removal abilities and characteristics of the 
diverse microorganisms that have been used for this purpose 
are described below.

Archaea
Some reports have already suggested the potential of 
thermophilic microorganisms for the bioleaching of spent 
catalysts (Deveci, Akcil & Alp, 2004). The sulfur-oxidizing 
extreme thermophile Acidianus brierleyi, which grows best 
in pH 1–2 and temperature 60–70 °C, has been identified 
with a good potential to perform the recovery of metals 
contained in minerals (Konishi, Tokushige, Asai & Suzuki, 
2001). Also, it was shown that when exposed to the presence 
of spent hydrotreating catalysts, in a pulp density between 
0.6-1% (w/v), A. brierleyi is capable of sustaining growth, 
and furthermore, metal solubility was observed in the ranges 
of 35-67% Al, 100% Fe, 69-100% Ni, and 83-100% Mo 
(Bharadwaj & Ting, 2013; Gerayeli, Ghojavand, Mousavi, 
Yaghmaei & Amiri, 2013). These authors, also demonstrated 

that Ni and Mo bioleaching using this microorganism was 
more effective than chemical leaching using commercial 
sulfuric acid (Bharadwaj & Ting, 2013).

Fungi
Besides their intrinsic removal capabilities, especially the 
incremented tolerance of microbial strains isolated from 
extremely polluted environments, some microorganisms 
possess the ability to survive to high concentrations of 
toxic heavy metals, by adaptation or mutation processes 
(Konishi et al., 2001; Valix & Loon, 2003; Bharadwaj & 
Ting, 2013; Gerayeli et al., 2013), which may confer them 
with exceptional survival advantages. For this reason, some 
researchers have inquired around this idea in order to obtain 
heavy metal-tolerant fungal strains, including descendants 
from Penicillium funiculosum, Aspergillus foetidus and 
Penicillium simplicissimum, specifically for the bioleaching 
of Ni laterite ores and low-grade ore materials (Valix & 
Loon, 2003; Santhiya & Ting, 2006; Liu et al., 2008); and 
Acremonium spp. and Penicillium spp. strains isolated from a 

Figure 1. Mechanisms of metal bio-removal by microorganisms: A) Production of acids for direct or indirect biolixiviation;
B) Oxidation and reduction reactions; or C) Production of metal (M) complexing agents. Figure designed by the authors.
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Table I. Metal removal from spent catalysts by different microorganisms. 

Microorganism
Removal efficiency (%)

Spent catalyst type Reference
Al Fe Ni Mo V

Archaea
Acidianus brierleyi 67 100 100 100 -a Hydrotreating catalyst Bharadwaj & Ting, 2013
Acidianus brierleyi 35 - 69 83 - Hydrocracking catalyst Gerayeli et al., 2013
Fungi
Acremonium sp. - - 21 - 23.5 Hydrocracking catalyst Gómez-Ramírez et al., 2015b
Aspergillus niger 30 23 9 - 36 Fluid catalytic cracking catalyst Aung & Ting, 2005
Aspergillus niger 54.5 - 58.2 82.3 - Refinery processing catalyst Santhiya & Ting, 2005
Aspergillus niger 65.2 - 78.5 82.4 - Refinery processing catalyst Santhiya & Ting, 2006
Aspergillus niger 13.9 - 45.8 99.5 - Hydrocracking catalyst Amiri et al., 2012
Penicillium sp. - - 0.0 - 24 Hydrocracking catalyst Gómez-Ramírez et al., 2015b
Penicillium simplicissimum 25 100 66.4 92.7 - Hydrocracking catalyst Amiri et al., 2011 
Rhodotorula mucilaginosa - - 87 - 48 Petroleum catalyst Arenas-Isaac et al., 2017
Rhodotorula mucilaginosa - - 9.4 - 2 Hydrocracking catalyst Gómez-Ramírez et al.,2014
Bacteria
Acidithiobacillus spp. - - 85 26 92 Hydroprocessing catalyst Kim et al., 2008
Acidithiobacillus spp. - - 88 46 95 Petroleum catalyst Pradhan et al., 2009
Acidithiobacillus 
thiooxidans

- - 88.3 58 32.3 Refinery catalyst Mishra et al., 2007

Acidithiobacillus 
thiooxidans

- - 88 46 95 Hydroprocessing catalyst Mishra et al., 2008

Acidithiobacillus 
thiooxidans

2.4 - 16 95 - Naphta hydrotreating catalyst Gholami et al., 2015

Acidithiobacillus 
thiooxidans

5.7 0.8 0.0 0.0 - Hydroprocessing catalyst Rivas-Castillo et al., 2018

Acidithiobacillus 
thiooxidans

0.4 0.8 0.1 0.0 - Automotive catalyst Rivas-Castillo et al., 2018

A. thiooxidans and A. 
ferrooxidans

10.0 - 58.6 5.8 33.4 Refinery catalyst Pathak et al., 2015

A. thiooxidans, A. 
ferrooxidans
and L. ferrooxidans

- - 83 40 90 Hydroprocessing catalyst Beolchini et al., 2010a,b, 2012

Acidithiobacillus spp. 
and Sulfobacillus 
thermosulfidooxidans

38 - 97 - 91 Petroleum catalyst Srichandan et al., 2014

Bacillus megaterium - - 10 - 6.5 Hydrocracking catalyst Arenas-Isaac et al., 2017
Bacillus megaterium 0.0 - 22.6 6.0 46.4 Hydrocracking catalyst Rivas-Castillo et al., 2017a
Bacillus megaterium 0.8 - 0.5 - 1.6 Petroleum catalyst Rivas-Castillo et al., 2019
Cupriavidus metallidurans 0.0 0.0 0.0 17.5 15.9 Petroleum catalyst Rivas-Castillo et al., 2017b
Microbacterium liquefaciens - - 40.6 - 9.3 Petroleum catalyst Rojas-Avelizapa et al., 2015
Microbacterium liquefaciens - - 45 - 25 Petroleum catalyst Gómez-Ramírez et al., 2015a
Microbacterium spp. - - 51 - 41.4 Petroleum catalyst Gómez-Ramírez et al., 2015a

a- Not Determined.
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high metal content soil have also been assessed for their metal 
removal capabilities from an hydrotreating spent catalyst 
(Gómez-Ramírez, Plata-González, Fierros-Romero & Rojas-
Avelipaza, 2015b). Amiri, Yaghmaei & Mousavi (2011) 
adapted the fungus P. simplicissimum to the metals Ni, Mo, 
Fe, and W, which were known to be present in a W-rich spent 
hydrocracking catalyst, and then performed a spent catalyst 
bioleaching assay using one-step and two-step processes, 
as well as assessing leaching efficiencies using the spent 
medium, at pulp densities between 1-5% (w/v). They reported 
the optimum removal efficiencies of 25% Al, 100% Fe, 66.4% 
Ni, 92.7% Mo, and 100% W, and also stated that an optimized 
two-step bioleaching process may be a suitable alternative to 
conventional treatment methods. As well, Santhiya & Ting 
(2006) performed the adaptation of Aspergillus niger to Ni, 
Mo and Al in order to assess the tolerance increment of this 
fungus to a spent refinery processing catalyst, observing that 
the Ni:Mo:Al-adapted strain extracted 78.5% Ni, 82.4% 
Mo and 65.2% Al, which represented higher Al and Ni 
removals compared to the ones with the non-adapted culture, 
demonstrating that adaptation may be a promising approach 
for the biotreatment of spent catalysts and high metal content 
wastes.

A.niger is one of the most widely used fungus for bioleaching 
approaches (Santhiya & Ting, 2005), and has also been used 
in the production of organic acids, such as citric acid (Grewal 
& Kalra, 1995), oxalic acid (Strasser et al., 1994) and gluconic 
acid (Dronawat, Svihla & Hanley, 1995), which can be used as 
lixiviants of heavy metals contained in ore materials and solid 
wastes (Bosshard et al., 1996; Groudev, Spasova, Georgiev & 
Nicolova, 2014). Results showed that the presence of a spent 
catalyst may cause a decrease in the biomass yield of this 
fungus but an increase in its oxalic acid secretion (Santhiya & 
Ting, 2005). The extraction of metals by A. niger from diverse 
spent catalysts in the presence of pulp densities between 1-3% 
(w/v) were in the range of 13.9-54.5% Al, 9-58.2% Ni, 82.3-
99.5% Mo, and 36% V (Aung & Ting, 2005; Santhiya & Ting, 
2005; Amiri, Mousavi, Yaghmaei & Barati, 2012). Besides, it 
was also demonstrated the lixiviation ability of Fe (23%), and 
Sb (64%) by A. niger from a spent catalyst, also reporting that 
its metal extraction efficiency tends to decrease with increased 
pulp density, and as in the case of other microbial bioleaching 
processes (Bharadwaj & Ting, 2013), this biotechnological 
approach allowed higher metal extraction yields than chemical 
leaching (Aung & Ting, 2005).

The yeast Rhodotorula mucilaginosa has been also tested for 
its metal removal capability, and it has been reported that a 
strain isolated from a filter plant of a Cu mine located in the 
Northwest of Argentina is capable of accumulating up to 44 
% of Cu from a medium supplemented with 0.5 mM CuSO4 
(Villegas, Amoroso & Figueroa, 2005). Also, a report has been 
published where the heavy metal-resistant R .mucilaginosa 

strain UANL-001L, isolated from the Northeast region of 
Mexico, presented a Minimum Inhibitory Concentration 
(MIC) of 1000 mg/L to Zn and Pb, and MICs between 600 and 
800 mg/L to Cr (III and VI), Cu, Cd and Ni. Also, this strain 
can produce an exopolysaccharide (EPS) during growth, 
which production is enhanced by the presence of metals like 
Zn (II), Pb (II), Cr (VI), Cu (II), Ni (II) and Cd (II) (Garza-
González et al., 2016). Besides, another R. mucilaginosa 
strain, coded as MV-9K-4, was isolated from a high metal 
content site in Guanajuato, Mexico, and when exposed to a 
spent catalyst at 16% (w/v) pulp density, presented the ability 
to remove 87% Ni and 48% V, being one of the most relevant 
strains in terms of its Ni and V removal capability of all the 
strains tested that were isolated in-situ from different mining 
sites (Arenas-Isaac et al., 2017).

Bacteria
Most of the studies about the biotreatment and extraction 
of valuable metals from spent catalysts have been focused 
on the use of the acidophilic sulfur-oxidizing bacteria 
Acidithiobacillus thiooxidans and Acidithiobacillus 
ferrooxidans (Rohwerder, Gehrke, Kinzler & Sand, 2003; 
Beolchini, Fonti, Ferella &Vegliò, 2010a; Hong & Valix, 
2014) in liquid and column systems (Pathak, Srichandan 
& Kim, 2019), mainly because they present biolixiviating 
properties. Besides, these microorganisms are autotrophic and 
tolerate high concentrations of heavy metals. The usefulness 
of Acidithiobacillus species for metal solubilization from 
ores and solid wastes is closely related to their ability to 
acidify their habitat by the production of special metabolic 
byproducts as leaching agents, like sulfuric acid and sulfur-
oxidation intermediates (Sand, Gehrke, Jozsa & Schippers, 
2001).

A. thiooxidans and A. ferrooxidans have been previously 
reported with the ability to reduce V (V) to V (IV) in the 
presence of elemental sulphur (Brandl et al., 2001; Bredberg, 
Karlsson & Holst, 2004), and studies have also demonstrated 
the applicability of these sulfur-oxidizing bacteria for the 
release of metals contained in different spent catalysts at diverse 
pulp densities, being capable of removing Ni, V and Mo in the 
ranges of 0.1-99%, 25-95%, and 25-95%, respectively (Mishra 
et al., 2007, 2008; Pradhan, Mishra, Kim, Chaudhury & Lee, 
2009; Gholami, Borghei & Mousavi, 2011; Gholami, Razeghi 
& Ghasemi, 2015; Pathak, Srichandan & Kim, 2015; Ferreira, 
Sérvulo, Ferreira & Oliveira, 2016; Rivas-Castillo, Gómez-
Ramírez, Rodríguez-Pozos & Rojas-Avelipaza, 2018). Both 
bacterial species, A. thiooxidans and A. ferrooxidans, seem to 
present similar leaching kinetics under the same conditions 
of pH, nutrient concentration, pulp density, particle size and 
temperature, and their dissolution kinetics were reported to 
be higher for Mo than for Ni and V (Pradhan et al., 2009). 
Also, Acidithiobacillus spp. Al and Co removal capabilities 
were reported between 0.4-89% and 83-96%, respectively 
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(Gholami et al., 2011, 2015; Pathak et al., 2015; Sharma et 
al., 2015; Ferreira et al., 2016; Rivas-Castillo et al., 2018). 
Both Mishra et al. (2008) and Pradhan et al. (2009) reported 
that two-step processes may be the most suitable to increase 
the bioleaching efficiencies of Acidithiobacillus spp., due to 
the general advantages of two-stage processes, as that the 
independent generation of the lixiviating agent separates the 
bioprocess from the chemical process, making it possible 
to optimize each step independently in order to maximize 
productivity (Mishra et al., 2008), and they also stated that 
higher waste concentrations can be treated with a two-step 
procedure, instead of a one-step process, to increase metal 
removal yields (Johnson, 2013).

Likewise, investigations with acidophilic bacteria have been 
conducted using mixed cultures of Acidithiobacillus spp., A. 
thiooxidans and A. ferrooxidans (Kim, Mishra, Park, Ahn 
& Ralph, 2008), and A. ferrooxidans, A. thiooxidans and 
Letosphirilum ferrooxidans (Beolchini et al., 2012), grown in 
the presence of a broad range of pulp densities, in the range 
of 0.15-10% (w/v) of spent catalysts. Results showed the 
removal of Ni, Mo and V to the extent of 83-85%, 26-40% 
and 90-92%, respectively, emphasizing the potential of this 
type of microorganisms to remove significant amounts of Ni 
and V, and a less amount of Mo. Furthermore, assays have 
been made to determine the leaching potential of moderate 
thermophilic bacteria using a mixed consortium of moderate 
thermophilic iron and sulphur oxidizers: Sulfobacillus 
thermosulfidooxidans, Acidithiobacillus caldus, A. 
ferrooxidans, and A. thiooxidans, in the presence of 10% (w/v) 
pulp density of a spent catalyst, where higher recoveries of Ni 
(92–97%) and V (81 - 91%) were obtained, whereas leaching 
of Al (23–38%) was lowest in all the assessed particle sizes 
of the spent catalysts, suggesting that bioleaching using a 
consortium of moderate thermophilic microorganisms may 
be also an efficient process for the recovery of metals from 
spent catalysts (Srichandan et al., 2014).

Besides sulfuric acid, which is the mainly acid found 
in bioleaching processes due to the metabolism of 
Acidithiobacillus species (Sand et al., 2001; Rawlings, 
2002), other organic acids may be produced by bacterial and 
fungal metabolisms, that may also promote metal removal 
from solid materials by acidification or complex and chelate 
formations (Burgstaller & Schinner, 1993). One of these cases 
is the solubilization of metals by Hydrogen Cyanide (HCN), 
which may be produced during microbial growth (Faramarzi 
& Brandl, 2006). As cyanide forms water-soluble metal 
complexes of high chemical stability, it may be a promising 
strategy for the recovery of metals that are removed from 
solid residues (Brandl, Lehmann, Faramarzi & Martinelli, 
2008; Motaghed, Mousavi, Rastegar & Shojaosadati, 2014). 
However, it is known that working with cyanide compounds 
present the inconvenience of HCN volatilization, which is 

a potent hazardous gas (Luque-Almagro, Moreno-Vivián & 
Roldán, 2016). It has been reported that B. megaterium strain 
PTCC 1656 may produce HCN when grown under glycine-
rich conditions (Faramarzi, Stagars, Pensini, Krebs & Brandl, 
2004; Faramarzi & Brandl, 2006).Thus, this strain was grown 
under these conditions in the presence of a spent refinery 
catalyst rich in Pt and Re at pulp densities of 1–10% (w/v), 
showing that after 7 days in the presence of 4% (w/v) pulp 
density of the residue, the maximum extraction for Pt and Re 
corresponded to 15.7% and 98%, respectively (Motaghed et 
al., 2014).

To address the hypothesis that native microorganisms from 
high metal content sites may present evolutionary advantages 
in reference to resistance and metal removal capabilities in 
the presence of spent catalysts, Arenas-Isaac et al. (2017) 
performed an in-situ sampling in four different mining sites 
in Guanajuato, Mexico, and demonstrated that all isolates 
recovered from these locations presented tolerance limits 
greater than 200 ppm for Ni and V. Moreover, when the strain 
coded as MV-9K-2, identified as Bacillus megaterium, was 
exposed to a spent catalyst at a pulp density of 16% (w/v), it 
was able to remove 2541.7 mg/kg of Ni and 3750 mg/kg of V, 
corresponding to 10% and 6.5% of each metal, respectively, 
showing the enhanced potential of MV-9K-2 for Ni and V 
removal from high metal content residues (Arenas-Isaac et al., 
2017). Also, B. megaterium strain MNSH1-9K-1, which was 
isolated during the same in-situ sampling, has been identified 
for its ability to remove up to 0.8% Al, 0.5% Ni, 46.4% V 
and 6% Mo from high metal content spent catalysts (Rivas-
Castillo, Orona-Tamayo, Gómez-Ramírez & Rojas-Avelipaza, 
2017a; Rivas-Castillo, Guatemala-Cisneros, Gómez-Ramírez 
& Rojas-Avelipaza, 2019).

Another in-situ isolated microorganism is Cupriavidus 
(Wautersia, Ralstonia, Alcaligenes) metallidurans strain 
CH34, which is widely known for its multiple heavy 
metal resistance and for possessing a proven capability 
for simultaneous heavy metal accumulation. When in 
contact with a spent catalyst, this strain was able to remove 
2111.20 ± 251.81 mg/kg of V and 931.56 ± 95.38 mg/kg of Mo, 
representing the 15.93% and 17.58% of each metal content in 
the residue, respectively (Rivas-Castillo et al., 2017b). On the 
other hand, it has been reported that Microbacterium spp. have 
been found in metal contaminated sites, and some isolates 
present enhanced resistance to As (Kaushik et al., 2012), and 
resistance and removal capabilities for U (Islam & Sar 2016). 
Also, some Microbacterium spp. strains were isolated in-situ 
from high metal content sites in Guanajuato, Mexico (Arenas-
Isaac et al., 2017), and three isolates, namely Microbacterium 
liquefaciens MNSH2-PHGII-2, Microbacterium oxydans 
MNSH2-PHGII-1, and Microbacterium oxydans MV-
PHGII-2 were evaluated on their potential for Ni and V 
removal contained in different spent catalysts, at pulp 
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densities of 8 and 16% (w/v). Results showed that these 
strains present the ability to remove Ni (16-45.4%) and V (9.5-
41.4%) contained in the high metal content residues, varying 
in their Ni and V removal capabilities between the strains 
isolated from the same site, or even between the strains of the 
same specie isolated from different sites (Arenas-Isaac et al., 
2017; Gómez-Ramírez, Flores-Martínez, López-Hernández & 
Rojas-Avelipaza, 2014; Gómez-Ramírez, Montero-Álvarez, 
Tobón-Avilés, Fierros-Romero & Rojas-Avelipaza, 2015a). 
Furthermore, M. liquefaciens strain MNSH2-PHGII-2 was 
assessed for its ability to remove Ni and V from a spent 
catalyst at 80% (w/v) pulp density in a glass-column system 
at laboratory conditions, showing a removal capability of 
40.6% and 9.3% for Ni and V, respectively (Rojas-Avelizapa, 
Gómez-Ramírez & Alamilla-Martínez, 2015).

Heterogeneity of the spent catalysts used 
for biotechnological experimentation
It is notorious that the diverse spent catalysts that have been 
used for metal removal experimentation are originated from 
different sources, and both their metal compositions and 
the pulp densities used for this purpose are different among 
the studies, as it is shown in the data presented in Table II. 
Besides, the experimental conditions reported differ between 
the assays, and it has been demonstrated that metal uptake and 
spent catalyst biotreatment efficiencies may vary with metal 
and pulp density concentrations, particle size, pH, temperature, 
incubation time, growth phase of the microorganisms used 
and inoculum concentration (Srichandan et al., 2014; Fan, 
Onal Okyay & Rodrigues, 2014; Motaghed et al., 2014). 
Thus, all these variables may represent an inconvenience for 
the accurate comparison of the metal removal abilities of the 

different microorganisms that have been tested. In addition, 
the removal capabilities are commonly reported in removal 
percentage, which may be tricking, as they represent the 
percentage content from varied metal compositions found in 
the different spent catalysts, and at diverse pulp densities. For 
example, it is reported that B. megaterium strain MV-9K-2 is 
able to remove only 10% of Ni from a spent catalyst, which 
although it may be seen as a low percentage, it represents 
2541.7 mg/kg removed from a spent catalyst that contains 
24,822 mg/kg of Ni, in contrast to M. liquefaciens strain 
MNSH2-PHGII-2 that was able to remove 45% of Ni from a 
spent catalyst that only contains 427.5 mg/kg of Ni (Arenas-
Isaac et al., 2017). Also, it has been previously observed that 
diverse genera of microorganisms present different metal 
removal preferences, that may also depend on the total metal 
charge, and the amounts and the types of metals and other 
components (as hydrocarbons) present in the solid residues 
(Rivas-Castillo et al., 2017a,b). Thus, the establishment of 
similar experimental conditions is essential in order to perform 
a proper comparison of the metal removal efficiencies and 
metal removal selectivity between different microorganisms.

Conclusions
Technological approaches for the biotreatment of spent 
catalysts and metal uptake are tending to move from effective 
chemical and thermal processes to eco-friendly solutions 
that may be slower, but as effective as the first, or even more 
effective. The development of cleaner technologies based 
on biotechnological approaches is becoming increasingly 
important for the recycling of these materials and for waste 
minimization, since the controlled microbiological processing 
of high metal content residues present meaningful advantages 

Table II. Compositions and pulp densities of spent catalysts used for biotreatment experimentation.

Metal composition (wt %) Pulp densities 
(% w/v) Reference

Al Fe Ni Mo V
17.50 0.56 0.26 - 0.39 1 - 12 Aung & Ting, 2005
19.20 49.00 2.10 8.50 -a 1 Bharadwaj & Ting, 2013
39.40 - 0.06 8.00 - 0.15 - 4 Gholami et al., 2011
10.97 0.03 2.48 3.27 5.76 8 Arenas-Isaac et al., 2017
10.31 0.40 0.04 0.002 0.22 16 Gómez-Ramírez et al., 2014
14.20 1.50 1.70 1.20 7.70 0.5 - 5 Mishra et al., 2008
15.31 - 2.70 2.34 8.76 1 Pathak et al., 2015
19.50 0.30 2.00 1.40 9.00 5 - 25 Pradhan et al., 2009, 2010
33.30 - 6.09 13.72 - 1 Santhiya & Ting 2005, 2006
15.70 - 3.06 2.03 11.30 10 Srichandan et al., 2014
10.12 0.62 0.16 0.53 1.32 1 - 10 Rivas-Castillo et al., 2017a
13.33 0.41 0.01 0.00 0.27 15 Rivas-Castillo et al., 2019

a- Not Determined.
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besides its ecological nature, as low economical investment 
and maintainance, and low energy costs. There are already 
examples of biotechnological approaches successfully 
implemented at an industrial scale and, hopefully, they will 
be continuously installed in developing countries in the near 
future, as these eco-friendly and cheaper procedures may 
represent clear advantages in countries like Mexico.

The current challenge may be to optimize the leaching 
rates and metal recoveries with respect to the biotreatment 
parameters and to the microorganisms used. In this latter 
respect, one way can be to improve the microbial adaptations 
to spent catalysts, in order to enhance their resistance and metal 
removal capabilities; and other, to identify and improve new 
strains with these metal removal inherent abilities, including 
the identification and genetic manipulation of molecular 
targets crucial for metal uptake, which has been scarcely 
studied for most of the microorganisms that have been tested 
and identified with relevant potential for the biotreatment 
of spent catalysts. Besides, detailed analyses about the 
correlation between the presence and quantity of each metal 
in spent catalysts, and the affinity of each microorganism for 
the removal of metal targets, may be of significant importance 
to optimize the strategies and encourage the scale-up of these 
processes.
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