ISSN: 1405-888X ISSN-e: 2395-8723
Flavonoides en la dieta, perspectivas en la regulación de la inflamación intestinal
Nombre científico: Latrodectus mactans. Nombre común: "viuda negra”. Nombre del fotógrafo: pendiente, por confirmar.
PDF

Palabras clave

colitis ulcerativa
cáncer de colon
flavonoides
polifenoles
medicina tradicional

Cómo citar

Nieto-Yáñez, Óscar, Navia, S. H., Ortiz-Sánchez, B. J., & Rodríguez-Sosa, M. (2025). Flavonoides en la dieta, perspectivas en la regulación de la inflamación intestinal. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.721

Resumen

La colitis ulcerativa (CU) es una enfermedad inflamatoria crónica del intestino que se manifiesta con dolor abdominal, daño tisular, acortamiento del colon, pérdida de peso, diarrea y sangrado; y es un factor de riesgo para el desarrollo del cáncer colorrectal. Sin embargo, cuando se reduce la inflamación del colon se aminoran los signos y síntomas de esta afección, incluso en etapas tempranas se detiene y se revierte su desarrollo. Los tratamientos antiinflamatorios naturales, sin efectos colaterales y de bajo costo, son una ventana de oportunidad en los países con economías emergentes. Los flavonoides son un grupo de polifenoles presentes en plantas y frutas, algunos de ellos son utilizados en la medicina tradicional para atenuar la inflamación del colon (colitis) y la de otros padecimientos. La acción, de los mecanismos farmacológicos de este grupo de compuestos es de amplio espectro al intervenir en la regulación de las poblaciones de la microbiota del colon, la protección contra el estrés oxidativo, la preservación de la función de la barrera epitelial, así como, las propiedades inmunomoduladoras. En esta revisión se mencionan los principales flavonoides que forman parte de la dieta. Describimos algunos de sus mecanismos reguladores de la inflamación y los contrastamos con la evasión inmunológica en el cáncer colorrectal asociado a la colitis. 

https://doi.org/10.22201/fesz.23958723e.2025.721
PDF

Citas

Abboud, P. A., Hake, P. W., Burroughs, T. J., Odoms, K., O’Connor, M., Mangeshkar, P. & Zingarelli, B. (2008). Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur. J. Pharmacol., 579(1-3), 411-417. https://doi.org/10.1016/j.ejphar.2007.10.053

Abron, J. D., Singh, N. P., Price, R. L., Nagarkatti, M., Nagarkatti, P. S. & Singh, U. P. (2018). Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS One, 13(7), e0199631. https://doi.org/10.1371/journal.pone.0199631

Achitei, D., Ciobica, A., Balan, G., Gologan, E., Stanciu, C. & Stefanescu, G. (2013). Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci., 58(5), 1244-1249. https://doi.org/10.1007/s10620-012-2510-z

Al-Rejaie, S. S., Abuohashish, H. M., Al-Enazi, M. M., Al-Assaf, A. H., Parmar, M. Y. & Ahmed, M. M. (2013). Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol., 19(34), 5633-5644. https://doi.org/10.3748/wjg.v19.i34.5633

Andrade-Meza, A., Arias-Romero, L. E., Armas-López, L., Ávila-Moreno, F., Chirino, Y. I., Delgado-Buenrostro, N. L., García-Castillo, V., Gutiérrez-Cirlos, E. B., Juárez-Avelar, I., Leon-Cabrera, S., Mendoza-Rodríguez, M. G., Olguín, J. E., Perez-Lopez, A., Pérez-Plasencia, C., Reyes, J. L., Sánchez-Pérez, Y., Terrazas, L. I., Vaca-Paniagua, F., Villamar-Cruz, O. & Rodríguez-Sosa, M. (2023). Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. International Journal of Molecular Sciences, 24(3), 2115. https://doi.org/10.3390/ijms24032115

Azuma, T., Shigeshiro, M., Kodama, M., Tanabe, S. & Suzuki, T. (2013). Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J. Nutr., 143(6), 827-834. https://doi.org/10.3945/jn.113.174508

Bellomo, C., Caja, L., Moustakas, A., Bellomo, C., Caja, L. & Moustakas, A. (2016). Transforming growth factor β as regulator of cancer stemness and metastasis. British Journal of Cancer, 115(7) 761–769. https://doi.org/10.1038/bjc.2016.255

Bian, Y., Liu, P., Zhong, J., Hu, Y., Zhuang, S., Fan, K. & Liu, Z. (2018). Quercetin Attenuates Adhesion Molecule Expression in Intestinal Microvascular Endothelial Cells by Modulating Multiple Pathways. Dig. Dis. Sci., 63(12), 3297-3304. https://doi.org/10.1007/s10620-018-5221-2

Bing, X., Xuelei, L., Wanwei, D., Linlang, L. & Keyan, C. (2017). EGCG Maintains Th1/Th2 Balance and Mitigates Ulcerative Colitis Induced by Dextran Sulfate Sodium through TLR4/MyD88/NF-kappaB Signaling Pathway in Rats. Can J. Gastroenterol. Hepatol., 3057268. https://doi.org/10.1155/2017/3057268

Cancer, I. A. F. R. (2022). Cancer Over Time. Retrieved 01-02-2025 from https://gco.iarc.fr/overtime/en

Cao, R., Wu, X., Guo, H., Pan, X., Huang, R., Wang, G. & Liu, J. (2021). Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules, 26(21), 6604. https://doi.org/10.3390/molecules26216604

Chaen, Y., Yamamoto, Y. & Suzuki, T. (2019). Naringenin promotes recovery from colonic damage through suppression of epithelial tumor necrosis factor-alpha production and induction of M2-type macrophages in colitic mice. Nutr. Res., 64, 82-92. https://doi.org/10.1016/j.nutres.2019.01.004

Chen, B., Luo, J., Han, Y., Du, H., Liu, J., He, W., Zhu, J., Xiao, J., Wang, J., Cao, Y., Xiao, H. & Song, M. (2021). Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. J. Agric. Food Chem., 69(27), 7663-7674. https://doi.org/10.1021/acs.jafc.1c03046

Chen, B., Yang, X., Zhan, M., Chen, Y., Xu, J., Xiao, J., Xiao, H. & Song, M. (2023). Dietary tangeretin improved antibiotic-associated diarrhea in mice by enhancing the intestinal barrier function, regulating the gut microbiota, and metabolic homeostasis. Food Funct., 14(24), 10731-10746. https://doi.org/10.1039/d3fo02998k

Chen, Y., Le, T. H., Du, Q., Zhao, Z., Liu, Y., Zou, J., Hua, W., Liu, C. & Zhu, Y. 2019). Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int. Immunopharmacol., 71, 144-154. https://doi.org/10.1016/j.intimp.2019.01.021

Contreras, T. C., Ricciardi, E., Cremonini, E. & Oteiza, P. I. (2015). (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch. Biochem. Biophys., 573, 84-91. https://doi.org/10.1016/j.abb.2015.01.024

Cui, L., Feng, L., Zhang, Z. H. & Jia, X. B. (2014). The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-kappaB pathway activation. Int. Immunopharmacol., 23(1), 294-303. https://doi.org/10.1016/j.intimp.2014.09.005

Dai, S. X., Zou, Y., Feng, Y. L., Liu, H. B. & Zheng, X. B. (2012). Baicalin down-regulates the expression of macrophage migration inhibitory factor (MIF) effectively for rats with ulcerative colitis. Phytother. Res., 26(4), 498-504. https://doi.org/10.1002/ptr.3581

Dempke, W., Rie, C., Grothey, A. & Schmoll, H. J. (2001). Cyclooxygenase-2: a novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol., 127(7), 411-417. https://doi.org/10.1007/s004320000225

Dodda, D., Chhajed, R. & Mishra, J. (2014). Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: possible morphological and biochemical alterations. Pharmacol Rep., 66(1), 169-173. https://doi.org/10.1016/j.pharep.2013.08.013

Dodda, D., Chhajed, R., Mishra, J. & Padhy, M. (2014). Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: role of quercetin. Indian J. Pharmacol., 46(3), 286-291. https://doi.org/10.4103/0253-7613.132160

Dong, J., Chen, Y., Yang, F., Zhang, W., Wei, K., Xiong, Y., Wang, L., Zhou, Z., Li, C., Wang, J. & Chen, D. (2021). Naringin Exerts Therapeutic Effects on Mice Colitis: A Study Based on Transcriptomics Combined With Functional Experiments. Front. Pharmacol., 12, 729414. https://doi.org/10.3389/fphar.2021.729414

Dong, Y., Hou, Q., Lei, J., Wolf, P. G., Ayansola, H. & Zhang, B. (2020). Quercetin Alleviates Intestinal Oxidative Damage Induced by H2O2 via Modulation of GSH: In Vitro Screening and In Vivo Evaluation in a Colitis Model of Mice. ACS Omega, 5(14), 8334-8346. https://doi.org/10.1021/acsomega.0c00804

Dou, W., Zhang, J., Sun, A., Zhang, E., Ding, L., Mukherjee, S., Wei, X., Chou, G., Wang, Z. & Mani, S. (2013). Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kappaB signalling. Br. J. Nutr., 110(4), 599-608. https://doi.org/10.1017/S0007114512005594

Drabsch, Y. & ten Dijke, P. (2012). TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev., 31(3-4), 553-568. https://doi.org/10.1007/s10555-012-9375-7

Du, Y., Ding, H., Vanarsa, K., Soomro, S., Baig, S., Hicks, J. & Mohan, C. (2019). Low dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability. Nutrients, 11(8), 1743, https://doi.org/10.3390/nu11081743

Egert, S. & Rimbach, G. (2011). Which sources of flavonoids: complex diets or dietary supplements? Adv. Nutr., 2(1), 8-14. https://doi.org/10.3945/an.110.000026

Elhefnawy, E. A., Zaki, H. F., El Maraghy, N. N., Ahmed, K. A. & Abd El-Haleim, E. A. (2023). Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-gamma/JAK1/STAT1/IRF-1, TLR-4/NF-kappaB/IL-6, and JAK2/STAT3/COX-2 crosstalk. Biochem. Pharmacol., 214, 115673. https://doi.org/10.1016/j.bcp.2023.115673

Esh, C. J., Chrismas, B. C. R., Mauger, A. R. & Taylor, L. (2021). Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol. Res. Perspect., 9(4), e00835. https://doi.org/10.1002/prp2.835

Eun, S. H., Woo, J. T. & Kim, D. H. (2017). Tangeretin Inhibits IL-12 Expression and NF-kappaB Activation in Dendritic Cells and Attenuates Colitis in Mice. Planta Med., 83(6), 527-533. https://doi.org/10.1055/s-0042-119074

Evans, C., Dalgleish, A. G. & Kumar, D. (2006). Review article: immune suppression and colorectal cancer. Aliment. Pharmacol. Ther., 24(8), 1163-1177. https://doi.org/10.1111/j.1365-2036.2006.03075.x

Fan, W., Zhang, S., Wu, Y., Lu, T., Liu, J., Cao, X., Liu, S., Yan, L., Shi, X., Liu, G., Huang, C. & Song, S. (2021). Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl. Mater. Interfaces, 13(34), 40249-40266. https://doi.org/10.1021/acsami.1c09215

Fantini, M. C. & Guadagni, I. (2021). From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig. Liver. Dis., 53(5), 558-565. https://doi.org/10.1016/j.dld.2021.01.012

Filmus, J. & Kerbel, R. S. (1993). Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-β during tumor progression. Current Opinion in Oncology, 5(1), 123-9.

Franza, L., Carusi, V., Nucera, E. & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors, 47(2), 181-189. https://doi.org/10.1002/biof.1710

Fu, R., Liu, S., Zhu, M., Zhu, J. & Chen, M. (2023). Apigenin reduces the suppressive effect of exosomes derived from irritable bowel syndrome patients on the autophagy of human colon epithelial cells by promoting ATG14. World J. Surg. Oncol., 21(1), 95. https://doi.org/10.1186/s12957-023-02963-5

Gerges, S. H., Tolba, M. F., Elsherbiny, D. A. & El-Demerdash, E. (2020). The natural flavonoid galangin ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Effect on Toll-like receptor 4, inflammation and oxidative stress. Basic Clin. Pharmacol. Toxicol., 127(1), 10-20. https://doi.org/10.1111/bcpt.13388

Gil-Cardoso, K., Ginés, I., Pinent, M., Ardévol, A., Blay, M. & Terra, X. (2016). Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity | Nutrition Research Reviews | Cambridge Core. Nutrition Research Reviews, 29(2), 234-248. https://doi.org/10.1017/S0954422416000159

Gros, B. & Kaplan, G. G. (2023). Ulcerative Colitis in Adults: A Review. JAMA, 330(10), 951-965. https://doi.org/10.1001/jama.2023.15389

Guazelli, C. F., Fattori, V., Colombo, B. B., Georgetti, S. R., Vicentini, F. T., Casagrande, R., Baracat, M. M. & Verri, W. A., Jr. (2013). Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J. Nat. Prod., 76(2), 200-208. https://doi.org/10.1021/np300670w

Guo, G., Shi, W., Shi, F., Gong, W., Li, F., Zhou, G. & She, J. (2019). Anti-inflammatory effects of eriocitrin against the dextran sulfate sodium-induced experimental colitis in murine model. J. Biochem. Mol. Toxicol., 33(11), e22400. https://doi.org/10.1002/jbt.22400

Guo, K., Ren, J., Gu, G., Wang, G., Gong, W., Wu, X., Ren, H., Hong, Z. & Li, J. (2020). Hesperidin Protects Against Intestinal Inflammation by Restoring Intestinal Barrier Function and Up-Regulating Treg Cells. Mol. Nutr. Food Res., 64(10), e1970058. https://doi.org/10.1002/mnfr.201970058

He, W., Li, Y., Liu, M., Yu, H., Chen, Q., Chen, Y., Ruan, J., Ding, Z., Zhang, Y. & Wang, T. (2018). Citrus aurantium L. and Its Flavonoids Regulate TNBS-Induced Inflammatory Bowel Disease through Anti-Inflammation and Suppressing Isolated Jejunum Contraction. Int. J. Mol. Sci., 19(10), 3057. https://doi.org/10.3390/ijms19103057

Hu, L., Wu, C., Zhang, Z., Liu, M., Maruthi Prasad, E., Chen, Y. & Wang, K. (2019). Pinocembrin Protects Against Dextran Sulfate Sodium-Induced Rats Colitis by Ameliorating Inflammation, Improving Barrier Function and Modulating Gut Microbiota. Front. Physiol., 10, 908. https://doi.org/10.3389/fphys.2019.00908

Hu, Y., Guan, X., He, Z., Xie, Y., Niu, Z., Zhang, W., Wang, A., Zhang, J., Si, C., Li, F. & Hu, W. (2023). Apigenin-7-O-glucoside alleviates DSS-induced colitis by improving intestinal barrier function and modulating gut microbiota. Journal of Functional Foods, 104, 105499. https://doi.org/10.1016/j.jff.2023.105499

Iftikhar, M., Iftikhar, A., Zhang, H., Gong, L. & Wang, J. (2020). Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Research International, 136, 109240. https://doi.org/10.1016/j.foodres.2020.109240

International Agency for Research on Cancer, W. H. O. (2022). Cancer Tomorrow. Retrieved 01-17-2025 from https://gco.iarc.fr/tomorrow/en

Jeffrey, K. L., Camps, M., Rommel, C. & Mackay, C. R. (2007). Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat. Rev. Drug Discov., 6(5), 391-403. https://doi.org/10.1038/nrd2289

Ji, G., Zhang, Y., Yang, Q., Cheng, S., Hao, J., Zhao, X. & Jiang, Z. (2012). Genistein suppresses LPS-induced inflammatory response through inhibiting NF-kappaB following AMP kinase activation in RAW 264.7 macrophages. PLoS One, 7(12), e53101. https://doi.org/10.1371/journal.pone.0053101

Jia, Q., Fang, S., Yang, R., Ling, Y., Mehmood, S., Ni, H. & Gao, Q. (2024). Genistein alleviates dextran sulfate sodium-induced colitis in mice through modulation of intestinal microbiota and macrophage polarization. Eur. J. Nutr., 63(5), 1877-1888. https://doi.org/10.1007/s00394-024-03391-1

Jin, C., Liu, J., Jin, R., Yao, Y., He, S., Lei, M. & Peng, X. (2022). Linarin ameliorates dextran sulfate sodium-induced colitis in C57BL/6J mice via the improvement of intestinal barrier, suppression of inflammatory responses and modulation of gut microbiota. Food Funct., 13(20), 10574-10586. https://doi.org/10.1039/d2fo02128e

Kaufmann, H. J. & Taubin, H. L. (1987). Nonsteroidal anti-inflammatory drugs activate quiescent inflammatory bowel disease. Ann. Intern. Med., 107(4), 513-516. https://doi.org/10.7326/0003-4819-107-4-513

Kis, B., Snipes, J. A., Isse, T., Nagy, K. & Busija, D. W. (2003). Putative cyclooxygenase-3 expression in rat brain cells. J. Cereb. Blood Flow Metab., 23(11), 1287-1292. https://doi.org/10.1097/01.WCB.0000090681.07515.81

Kojima, M., Morisaki, T., Uchiyama, A., Doi, F., Mibu, R., Katano, M. & Tanaka, M. (2001). Association of enhanced cyclooxygenase-2 expression with possible local immunosuppression in human colorectal carcinomas. Ann. Surg. Oncol., 8(5), 458-465. https://doi.org/10.1007/s10434-001-0458-x

Kumar, V. S., Rajmane, A. R., Adil, M., Kandhare, A. D., Ghosh, P. & Bodhankar, S. L. (2014). Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats. J. Biomed. Res., 28(2), 132-145. https://doi.org/10.7555/JBR.27.20120082

Kwon, K. H., Murakami, A., Tanaka, T. & Ohigashi, H. (2005). Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression - PubMed. Biochemical Pharmacology, 69(3), 395-406. https://doi.org/10.1016/j.bcp.2004.10.015

Li, Y. Shen, L. & Luo, H. (2016). Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway - PubMed. International Immunopharmacology, 40, 24-31. https://doi.org/10.1016/j.intimp.2016.08.020

Li, B. L., Zhao, D. Y., Du, P. L., Wang, X. T., Yang, Q. & Cai, Y. R. (2021). Luteolin alleviates ulcerative colitis through SHP-1/STAT3 pathway. Inflamm. Res., 70(6), 705-717. https://doi.org/10.1007/s00011-021-01468-9

Li, M. & Weigmann, B. (2023). Effect of a Flavonoid Combination of Apigenin and Epigallocatechin-3-Gallate on Alleviating Intestinal Inflammation in Experimental Colitis Models. Int. J. Mol. Sci., 24(22), 16031. https://doi.org/10.3390/ijms242216031

Li, Y. Y., Wang, X. J., Su, Y. L., Wang, Q., Huang, S. W., Pan, Z. F., Chen, Y. P., Liang, J. J., Zhang, M,L., Xie, X, Q., Wu, Z. Y., Chen, J, Y., Zhou, L. & Luo, X. (2022). Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin., 43(6), 1495-1507. https://doi.org/10.1038/s41401-021-00781-7

Liu, S. H., Lu, T. H., Su, C. C., Lay, I. S., Lin, H. Y., Fang, K. M., Ho, T. J., Chen, K, L., Su, Y. C., Chiang, W. C. & Chen, Y. W. (2014). Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-kappaB signaling pathway. Am. J. Chin. Med., 42(4), 869-889. https://doi.org/10.1142/S0192415X14500554

Magadan-Corpas, P., Perez-Valero, A., Ye, S., Sordon, S., Huszcza, E., Poplonski, J., Villar, C. J. & Lombo, F. (2024). Gut Microbiota and Inflammation Modulation in a Rat Model for Ulcerative Colitis after the Intraperitoneal Administration of Apigenin, Luteolin, and Xanthohumol. Int. J. Mol. Sci., 25(6), 3236. https://doi.org/10.3390/ijms25063236

Marquez-Flores, Y. K., Villegas, I., Cardeno, A., Rosillo, M. A. & Alarcon-de-la-Lastra, C. (2016). Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem., 30, 143-152. https://doi.org/10.1016/j.jnutbio.2015.12.002

Marzocchella, L., Fantini, M., Benvenuto, M., Masuelli, L., Tresoldi, I., Modesti, A. & Bei, R. (2011). Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents. Recent Pat. Inflamm. Allergy Drug Discov., 5(3), 200-220. https://doi.org/10.2174/187221311797264937

Morimoto, M., Watanabe, T., Yamori, M., Takebe, M. & Wakatsuki, Y. (2009). Isoflavones regulate innate immunity and inhibit experimental colitis. J. Gastroenterol. Hepatol., 24(6), 1123-1129. https://doi.org/10.1111/j.1440-1746.2008.05714.x

Nakase, H., Sato, N., Mizuno, N. & Ikawa, Y. (2022). The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev., 21(3), 103017. https://doi.org/10.1016/j.autrev.2021.103017

Nishitani, Y., Yamamoto, K., Yoshida, M., Azuma, T., Kanazawa, K., Hashimoto, T. & Mizuno, M. (2013). Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-kappaB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 39(5), 522-533. https://doi.org/10.1002/biof.1091

Park, M. Y., Ji, G. E. & Sung, M. K. (2012). Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci., 57(2), 355-363. https://doi.org/10.1007/s10620-011-1883-8

Pavlick, K. P., Laroux, F. S., Fuseler, J., Wolf, R. E., Gray, L., Hoffman, J. & Grisham, M. B. (2002). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med., 33(3), 311-322. https://doi.org/10.1016/s0891-5849(02)00853-5

Pena-Romero, A. C. & Orenes-Pinero, E. (2022). Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel), 14(7), 1681. https://doi.org/10.3390/cancers14071681

Peralta-Zaragoza, O., Lagunas-Martínez, A. & Madrid-Marina, V. (2001). Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer. Salud Pública de México, 43(4), 340-351.

Piechota-Polanczyk, A. & Fichna, J. (2014). Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch. Pharmacol., 387(7), 605-620. https://doi.org/10.1007/s00210-014-0985-1

Polat, F. R. & Karaboga, I. (2019). Immunohistochemical examination of anti-inflammatory and anti-apoptotic effects of hesperetin on trinitrobenzene sulfonic acid induced colitis in rats. Biotech. Histochem., 94(3), 151-158. https://doi.org/10.1080/10520295.2018.1530454

Porath, D., Riegger, C., Drewe, J. & Schwager, J. (2005). Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. J. Pharmacol. Exp. Ther., 315(3), 1172-1180. https://doi.org/10.1124/jpet.105.090167

Poritz, L. S., Harris, L. R., 3rd, Kelly, A. A. & Koltun, W. A. (2011). Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig. Dis. Sci., 56(10), 2802-2809. https://doi.org/10.1007/s10620-011-1688-9

Qu, X., Li, Q., Song, Y., Xue, A., Liu, Y., Qi, D. & Dong, H. (2020). Potential of myricetin to restore the immune balance in dextran sulfate sodium-induced acute murine ulcerative colitis. J. Pharm. Pharmacol., 72(1), 92-100. https://doi.org/10.1111/jphp.13197

Radulovic, K., Normand, S., Rehman, A., Delanoye-Crespin, A., Chatagnon, J., Delacre, M., Waldschmitt, N., Poulin, L. F., Iovanna, J., Ryffel, B., Rosenstiel, P. & Chamaillard, M. (2018). A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation. Mucosal Immunol., 11(3), 811-819. https://doi.org/10.1038/mi.2017.87

Ran, Z. H., Chen, C. & Xiao, S. D. (2008). Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed. Pharmacother., 62(3), 189-196. https://doi.org/10.1016/j.biopha.2008.02.002

Ren, J., Yue, B., Wang, H., Zhang, B., Luo, X., Yu, Z., Zhang, J., Ren, Y., Mani, S., Wang, Z. & Dou, W. (2020). Acacetin Ameliorates Experimental Colitis in Mice via Inhibiting Macrophage Inflammatory Response and Regulating the Composition of Gut Microbiota. Front. Physiol., 11, 577237. https://doi.org/10.3389/fphys.2020.577237

Rezaie, A., Parker, R. D. & Abdollahi, M. (2007). Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig. Dis. Sci., 52(9), 2015-2021. https://doi.org/10.1007/s10620-006-9622-2

Riemschneider, S., Hoffmann, M., Slanina, U., Weber, K., Hauschildt, S. & Lehmann, J. (2021). Indol-3-Carbinol and Quercetin Ameliorate Chronic DSS-Induced Colitis in C57BL/6 Mice by AhR-Mediated Anti-Inflammatory Mechanisms. Int. J. Environ. Res. Public. Health, 18(5), 2262. https://doi.org/10.3390/ijerph18052262

Sahu, B. D., Kumar, J. M. & Sistla, R. (2016). Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-kappaB signaling. J. Nutr. Biochem., 28, 171-182. https://doi.org/10.1016/j.jnutbio.2015.10.004

Sanchez-Munoz, F., Dominguez-Lopez, A. & Yamamoto-Furusho, J. K. (2008). Role of cytokines in inflammatory bowel disease. World J. Gastroentero.l, 14(27), 4280-4288. https://doi.org/10.3748/wjg.14.4280

Sangaraju, R., Nalban, N., Alavala, S., Rajendran, V., Jerald, M. K. & Sistla, R. (2019). Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflamm. Res., 68(8), 691-704. https://doi.org/10.1007/s00011-019-01252-w

Schwanke, R. C., Marcon, R., Meotti, F. C., Bento, A. F., Dutra, R. C., Pizzollatti, M. G. & Calixto, J. B. (2013). Oral administration of the flavonoid myricitrin prevents dextran sulfate sodium-induced experimental colitis in mice through modulation of PI3K/Akt signaling pathway. Mol. Nutr. Food. Res., 57(11), 1938-1949. https://doi.org/10.1002/mnfr.201300134

Seibel, J., Molzberger, A. F., Hertrampf, T., Laudenbach-Leschowski, U. & Diel, P. (2009). Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur. J. Nutr., 48(4), 213-220. https://doi.org/10.1007/s00394-009-0004-3

Sergent, T., Piront, N., Meurice, J., Toussaint, O. & Schneider, Y. J. (2010). Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact., 188(3), 659-667. https://doi.org/10.1016/j.cbi.2010.08.007

Shafik, N. M., Gaber, R. A., Mohamed, D. A. & Ebeid, A. M. (2019). Hesperidin modulates dextran sulfate sodium-induced ulcerative colitis in rats: Targeting sphingosine kinase-1- sphingosine 1 phosphate signaling pathway, mitochondrial biogenesis, inflammation, and apoptosis. J. Biochem. Mol. Toxicol., 33(6), e22312. https://doi.org/10.1002/jbt.22312

Shah, S. C. & Itzkowitz, S. H. (2022). Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology, 162(3), 715-730 e713. https://doi.org/10.1053/j.gastro.2021.10.035

Sharma, A., Tirpude, N. V., Kumari, M. & Padwad, Y. (2021). Rutin prevents inflammation-associated colon damage via inhibiting the p38/MAPKAPK2 and PI3K/Akt/GSK3beta/NF-kappaB signalling axes and enhancing splenic Tregs in DSS-induced murine chronic colitis. Food Funct., 12(18), 8492-8506. https://doi.org/10.1039/d1fo01557e

Shen, J., Cheng, J., Zhu, S., Zhao, J., Ye, Q., Xu, Y., Dong, H. & Zheng, X. (2019). Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis. Int. Immunopharmacol, 73, 193-200. https://doi.org/10.1016/j.intimp.2019.04.052

Shen, J., Li, N. & Zhang, X. (2019). Daidzein Ameliorates Dextran Sulfate Sodium-Induced Experimental Colitis in Mice by Regulating NF-kappaB Signaling. J. Environ. Pathol. Toxicol. Oncol., 38(1), 29-39. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018027531

Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531

Shin, E. K., Kwon, H. S., Kim, Y. H., Shin, H. K. & Kim, J. K. (2009). Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochem. Biophys. Res. Commun., 381(4), 502-507. https://doi.org/10.1016/j.bbrc.2009.02.071

Terabe, M., Park, J. M. & Berzofsky, J. A. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol. Immunother., 53(2), 79-85. https://doi.org/10.1007/s00262-003-0445-0

Vezza, T., Rodriguez-Nogales, A., Algieri, F., Utrilla, M. P., Rodriguez-Cabezas, M. E. & Galvez, J. (2016). Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients, 8(4), 211. https://doi.org/10.3390/nu8040211

Vukelic, I., Detel, D., Baticic, L., Potocnjak, I. & Domitrovic, R. (2020). Luteolin ameliorates experimental colitis in mice through ERK-mediated suppression of inflammation, apoptosis and autophagy. Food Chem. Toxicol., 145, 111680. https://doi.org/10.1016/j.fct.2020.111680

Wang, H., Huang, X., Xia, S., Chen, C., Chen, X., Zhang, Y., Farag, M. A., Xiao J. & Nie, S. (2023). Celery soluble dietary fiber antagonizes flavonoids ameliorative effect on dextran-sodium-sulfate-induced colitis in mice. J. Adv. Res., 52, 73-88. https://doi.org/10.1016/j.jare.2023.01.013

Wang, J., Li, D., Cang, H. & Guo, B. (2019). Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med., 8(10), 4709-4721. https://doi.org/10.1002/cam4.2327

Wang, L., Li, M., Gu, Y., Shi, J., Yan, J., Wang, X., Li B, Wang, B., Zhong, W. & Cao, H. (2024). Dietary flavonoids-microbiota crosstalk in intestinal inflammation and carcinogenesis. J. Nutr. Biochem., 125, 109494. https://doi.org/10.1016/j.jnutbio.2023.109494

Wang, S., Cao, M., Xu, S., Shi, J., Mao, X., Yao, X. & Liu, C. (2020). Luteolin Alters Macrophage Polarization to Inhibit Inflammation. Inflammation, 43(1), 95-108. https://doi.org/10.1007/s10753-019-01099-7

Weng, C. J. & Yen, G. C. (2012). Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev., 31(1-2), 323-351. https://doi.org/10.1007/s10555-012-9347-y

Wijnands, A. M., de Jong, M. E., Lutgens, M., Hoentjen, F., Elias, S. G., Oldenburg, B. & Dutch Initiative on Crohn and Colitis (ICC). (2021). Prognostic Factors for Advanced Colorectal Neoplasia in Inflammatory Bowel Disease: Systematic Review and Meta-analysis. Gastroenterology, 160(5), 1584-1598. https://doi.org/10.1053/j.gastro.2020.12.036

Xu, L., Yang, Z. L., Li, P. & Zhou, Y. Q. (2009). Modulating effect of Hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine, 16(10), 989-995. https://doi.org/10.1016/j.phymed.2009.02.021

Xu, Z., Wei, C., Zhang, R. U., Yao, J., Zhang, D. & Wang, L. (2015). Epigallocatechin-3-gallate-induced inhibition of interleukin-6 release and adjustment of the regulatory T/T helper 17 cell balance in the treatment of colitis in mice. Exp. Ther. Med., 10(6), 2231-2238. https://doi.org/10.3892/etm.2015.2824

Xuan, H., Ou, A., Hao, S., Shi, J. & Jin, X. (2020). Galangin Protects against Symptoms of Dextran Sodium Sulfate-induced Acute Colitis by Activating Autophagy and Modulating the Gut Microbiota. Nutrients, 12(2), 347. https://doi.org/10.3390/nu12020347

Xue, J., Yu, X., Xue, L., Ge, X., Zhao, W. & Peng, W. (2019). Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomed. Pharmacother., 115, 108921. https://doi.org/10.1016/j.biopha.2019.108921

Xue, J. C., Yuan, S., Meng, H., Hou, X. T., Li, J., Zhang, H. M., Chen, L. L., Zhang, C, H., & Zhang, Q. G. (2023). The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed. Pharmacother., 158, 114086. https://doi.org/10.1016/j.biopha.2022.114086

Yao, J., Liu, T., Chen, R. J., Liang, J., Li, J. & Wang, C. G. (2020). Sphingosine-1-phosphate signal transducer and activator of transcription 3 signaling pathway contributes to baicalein-mediated inhibition of dextran sulfate sodium-induced experimental colitis in mice. Chin. Med. J. (Engl.), 133(3), 292-300. https://doi.org/10.1097/CM9.0000000000000627

Yoshiro, I., Kenji, K. & Yoshiharu, S. (2019). Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. International Journal of Molecular Sciences, 20(23), 5822. https://doi.org/10.3390/ijms20235822

Yu, F. Y., Huang, S. G., Zhang, H. Y., Ye, H., Chi, H. G., Zou, Y., Lv, R. X. & Zheng, X. B. (2014). Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients. World J. Gastroenterol., 20(41), 15299-15309. https://doi.org/10.3748/wjg.v20.i41.15299

Yue, B., Ren, J., Yu, Z., Luo, X., Ren, Y., Zhang, J., Mani S, Wang, Z. & Dou, W. (2020). Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-kappaB pathway and promoting intestinal barrier. Biosci. Rep., 40(7), BSR20200986. https://doi.org/10.1042/BSR20200986

Zhang, H., Deng, A., Zhang, Z., Yu, Z., Liu, Y., Peng, S., Wu, L., Qin, H. & Wang, W. (2016). The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-kappaB pathway. Pharmacol. Rep., 68(3), 514-520. https://doi.org/10.1016/j.pharep.2015.12.011

Zhang, J., Lei, H., Hu, X. & Dong, W. (2020). Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur. J. Pharmacol., 873, 172992. https://doi.org/10.1016/j.ejphar.2020.172992

Zhang, Y., Johnson, A. C., Su, C., Zhang, M., Jurgens, M. D., Shi, Y. & Lu, Y. (2017). Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem? Chemosphere, 178, 11-18. https://doi.org/10.1016/j.chemosphere.2017.02.137

Zhao, J., Hong, T., Dong, M., Meng, Y. & Mu, J. (2013). Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Mol. Med. Rep., 7(2), 565-570. https://doi.org/10.3892/mmr.2012.1225

Zhou, R. W., Harpaz, N., Itzkowitz, S. H. & Parsons, R. E. (2023). Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis, 12(1), 48. https://doi.org/10.1038/s41389-023-00492-0

Zhu, L., Shen, H., Gu, P. Q., Liu, Y. J., Zhang, L. & Cheng, J. F. (2020). Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation. Exp. Ther. Med., 20(1), 581-590. https://doi.org/10.3892/etm.2020.8718

Zhu, L., Xu, L. Z., Zhao, S., Shen, Z. F., Shen, H. & Zhan, L. B. (2020). Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Appl. Microbiol. Biotechnol., 104(12), 5449-5460. https://doi.org/10.1007/s00253-020-10527-w

Zhu, W., Jin, Z., Yu, J., Liang, J., Yang, Q., Li, F., Shi, X., Zhu, X. & Zhang, X. (2016). Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int. Immunopharmacol., 35, 119-126. https://doi.org/10.1016/j.intimp.2016.03.030

Zou, Y., Dai, S. X., Chi, H. G., Li, T., He, Z. W., Wang, J., Ye, C, G., Huang, G. L., Zhao, B., Li, W. Y., Wan, Z., Feng, J. S. & Zheng, X. B. (2015). Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm. Arch. Pharm. Res., 38(10), 1873-1887. https://doi.org/10.1007/s12272-014-0486-2

Zuo, T., Yue, Y., Wang, X., Li, H. & Yan, S. (2021). Luteolin Relieved DSS-Induced Colitis in Mice via HMGB1-TLR-NF-kappaB Signaling Pathway. Inflammation, 44(2), 570-579. https://doi.org/10.1007/s10753-020-01354-2

Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México

Licencia Creative Commons

TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.

Descargas

Los datos de descargas todavía no están disponibles.