Resumen
La colitis ulcerativa (CU) es una enfermedad inflamatoria crónica del intestino que se manifiesta con dolor abdominal, daño tisular, acortamiento del colon, pérdida de peso, diarrea y sangrado; y es un factor de riesgo para el desarrollo del cáncer colorrectal. Sin embargo, cuando se reduce la inflamación del colon se aminoran los signos y síntomas de esta afección, incluso en etapas tempranas se detiene y se revierte su desarrollo. Los tratamientos antiinflamatorios naturales, sin efectos colaterales y de bajo costo, son una ventana de oportunidad en los países con economías emergentes. Los flavonoides son un grupo de polifenoles presentes en plantas y frutas, algunos de ellos son utilizados en la medicina tradicional para atenuar la inflamación del colon (colitis) y la de otros padecimientos. La acción, de los mecanismos farmacológicos de este grupo de compuestos es de amplio espectro al intervenir en la regulación de las poblaciones de la microbiota del colon, la protección contra el estrés oxidativo, la preservación de la función de la barrera epitelial, así como, las propiedades inmunomoduladoras. En esta revisión se mencionan los principales flavonoides que forman parte de la dieta. Describimos algunos de sus mecanismos reguladores de la inflamación y los contrastamos con la evasión inmunológica en el cáncer colorrectal asociado a la colitis.
Citas
Abboud, P. A., Hake, P. W., Burroughs, T. J., Odoms, K., O’Connor, M., Mangeshkar, P. & Zingarelli, B. (2008). Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur. J. Pharmacol., 579(1-3), 411-417. https://doi.org/10.1016/j.ejphar.2007.10.053
Abron, J. D., Singh, N. P., Price, R. L., Nagarkatti, M., Nagarkatti, P. S. & Singh, U. P. (2018). Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS One, 13(7), e0199631. https://doi.org/10.1371/journal.pone.0199631
Achitei, D., Ciobica, A., Balan, G., Gologan, E., Stanciu, C. & Stefanescu, G. (2013). Different profile of peripheral antioxidant enzymes and lipid peroxidation in active and non-active inflammatory bowel disease patients. Dig. Dis. Sci., 58(5), 1244-1249. https://doi.org/10.1007/s10620-012-2510-z
Al-Rejaie, S. S., Abuohashish, H. M., Al-Enazi, M. M., Al-Assaf, A. H., Parmar, M. Y. & Ahmed, M. M. (2013). Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol., 19(34), 5633-5644. https://doi.org/10.3748/wjg.v19.i34.5633
Andrade-Meza, A., Arias-Romero, L. E., Armas-López, L., Ávila-Moreno, F., Chirino, Y. I., Delgado-Buenrostro, N. L., García-Castillo, V., Gutiérrez-Cirlos, E. B., Juárez-Avelar, I., Leon-Cabrera, S., Mendoza-Rodríguez, M. G., Olguín, J. E., Perez-Lopez, A., Pérez-Plasencia, C., Reyes, J. L., Sánchez-Pérez, Y., Terrazas, L. I., Vaca-Paniagua, F., Villamar-Cruz, O. & Rodríguez-Sosa, M. (2023). Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. International Journal of Molecular Sciences, 24(3), 2115. https://doi.org/10.3390/ijms24032115
Azuma, T., Shigeshiro, M., Kodama, M., Tanabe, S. & Suzuki, T. (2013). Supplemental naringenin prevents intestinal barrier defects and inflammation in colitic mice. J. Nutr., 143(6), 827-834. https://doi.org/10.3945/jn.113.174508
Bellomo, C., Caja, L., Moustakas, A., Bellomo, C., Caja, L. & Moustakas, A. (2016). Transforming growth factor β as regulator of cancer stemness and metastasis. British Journal of Cancer, 115(7) 761–769. https://doi.org/10.1038/bjc.2016.255
Bian, Y., Liu, P., Zhong, J., Hu, Y., Zhuang, S., Fan, K. & Liu, Z. (2018). Quercetin Attenuates Adhesion Molecule Expression in Intestinal Microvascular Endothelial Cells by Modulating Multiple Pathways. Dig. Dis. Sci., 63(12), 3297-3304. https://doi.org/10.1007/s10620-018-5221-2
Bing, X., Xuelei, L., Wanwei, D., Linlang, L. & Keyan, C. (2017). EGCG Maintains Th1/Th2 Balance and Mitigates Ulcerative Colitis Induced by Dextran Sulfate Sodium through TLR4/MyD88/NF-kappaB Signaling Pathway in Rats. Can J. Gastroenterol. Hepatol., 3057268. https://doi.org/10.1155/2017/3057268
Cancer, I. A. F. R. (2022). Cancer Over Time. Retrieved 01-02-2025 from https://gco.iarc.fr/overtime/en
Cao, R., Wu, X., Guo, H., Pan, X., Huang, R., Wang, G. & Liu, J. (2021). Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules, 26(21), 6604. https://doi.org/10.3390/molecules26216604
Chaen, Y., Yamamoto, Y. & Suzuki, T. (2019). Naringenin promotes recovery from colonic damage through suppression of epithelial tumor necrosis factor-alpha production and induction of M2-type macrophages in colitic mice. Nutr. Res., 64, 82-92. https://doi.org/10.1016/j.nutres.2019.01.004
Chen, B., Luo, J., Han, Y., Du, H., Liu, J., He, W., Zhu, J., Xiao, J., Wang, J., Cao, Y., Xiao, H. & Song, M. (2021). Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. J. Agric. Food Chem., 69(27), 7663-7674. https://doi.org/10.1021/acs.jafc.1c03046
Chen, B., Yang, X., Zhan, M., Chen, Y., Xu, J., Xiao, J., Xiao, H. & Song, M. (2023). Dietary tangeretin improved antibiotic-associated diarrhea in mice by enhancing the intestinal barrier function, regulating the gut microbiota, and metabolic homeostasis. Food Funct., 14(24), 10731-10746. https://doi.org/10.1039/d3fo02998k
Chen, Y., Le, T. H., Du, Q., Zhao, Z., Liu, Y., Zou, J., Hua, W., Liu, C. & Zhu, Y. 2019). Genistein protects against DSS-induced colitis by inhibiting NLRP3 inflammasome via TGR5-cAMP signaling. Int. Immunopharmacol., 71, 144-154. https://doi.org/10.1016/j.intimp.2019.01.021
Contreras, T. C., Ricciardi, E., Cremonini, E. & Oteiza, P. I. (2015). (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Arch. Biochem. Biophys., 573, 84-91. https://doi.org/10.1016/j.abb.2015.01.024
Cui, L., Feng, L., Zhang, Z. H. & Jia, X. B. (2014). The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-kappaB pathway activation. Int. Immunopharmacol., 23(1), 294-303. https://doi.org/10.1016/j.intimp.2014.09.005
Dai, S. X., Zou, Y., Feng, Y. L., Liu, H. B. & Zheng, X. B. (2012). Baicalin down-regulates the expression of macrophage migration inhibitory factor (MIF) effectively for rats with ulcerative colitis. Phytother. Res., 26(4), 498-504. https://doi.org/10.1002/ptr.3581
Dempke, W., Rie, C., Grothey, A. & Schmoll, H. J. (2001). Cyclooxygenase-2: a novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol., 127(7), 411-417. https://doi.org/10.1007/s004320000225
Dodda, D., Chhajed, R. & Mishra, J. (2014). Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: possible morphological and biochemical alterations. Pharmacol Rep., 66(1), 169-173. https://doi.org/10.1016/j.pharep.2013.08.013
Dodda, D., Chhajed, R., Mishra, J. & Padhy, M. (2014). Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: role of quercetin. Indian J. Pharmacol., 46(3), 286-291. https://doi.org/10.4103/0253-7613.132160
Dong, J., Chen, Y., Yang, F., Zhang, W., Wei, K., Xiong, Y., Wang, L., Zhou, Z., Li, C., Wang, J. & Chen, D. (2021). Naringin Exerts Therapeutic Effects on Mice Colitis: A Study Based on Transcriptomics Combined With Functional Experiments. Front. Pharmacol., 12, 729414. https://doi.org/10.3389/fphar.2021.729414
Dong, Y., Hou, Q., Lei, J., Wolf, P. G., Ayansola, H. & Zhang, B. (2020). Quercetin Alleviates Intestinal Oxidative Damage Induced by H2O2 via Modulation of GSH: In Vitro Screening and In Vivo Evaluation in a Colitis Model of Mice. ACS Omega, 5(14), 8334-8346. https://doi.org/10.1021/acsomega.0c00804
Dou, W., Zhang, J., Sun, A., Zhang, E., Ding, L., Mukherjee, S., Wei, X., Chou, G., Wang, Z. & Mani, S. (2013). Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-kappaB signalling. Br. J. Nutr., 110(4), 599-608. https://doi.org/10.1017/S0007114512005594
Drabsch, Y. & ten Dijke, P. (2012). TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev., 31(3-4), 553-568. https://doi.org/10.1007/s10555-012-9375-7
Du, Y., Ding, H., Vanarsa, K., Soomro, S., Baig, S., Hicks, J. & Mohan, C. (2019). Low dose Epigallocatechin Gallate Alleviates Experimental Colitis by Subduing Inflammatory Cells and Cytokines, and Improving Intestinal Permeability. Nutrients, 11(8), 1743, https://doi.org/10.3390/nu11081743
Egert, S. & Rimbach, G. (2011). Which sources of flavonoids: complex diets or dietary supplements? Adv. Nutr., 2(1), 8-14. https://doi.org/10.3945/an.110.000026
Elhefnawy, E. A., Zaki, H. F., El Maraghy, N. N., Ahmed, K. A. & Abd El-Haleim, E. A. (2023). Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-gamma/JAK1/STAT1/IRF-1, TLR-4/NF-kappaB/IL-6, and JAK2/STAT3/COX-2 crosstalk. Biochem. Pharmacol., 214, 115673. https://doi.org/10.1016/j.bcp.2023.115673
Esh, C. J., Chrismas, B. C. R., Mauger, A. R. & Taylor, L. (2021). Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol. Res. Perspect., 9(4), e00835. https://doi.org/10.1002/prp2.835
Eun, S. H., Woo, J. T. & Kim, D. H. (2017). Tangeretin Inhibits IL-12 Expression and NF-kappaB Activation in Dendritic Cells and Attenuates Colitis in Mice. Planta Med., 83(6), 527-533. https://doi.org/10.1055/s-0042-119074
Evans, C., Dalgleish, A. G. & Kumar, D. (2006). Review article: immune suppression and colorectal cancer. Aliment. Pharmacol. Ther., 24(8), 1163-1177. https://doi.org/10.1111/j.1365-2036.2006.03075.x
Fan, W., Zhang, S., Wu, Y., Lu, T., Liu, J., Cao, X., Liu, S., Yan, L., Shi, X., Liu, G., Huang, C. & Song, S. (2021). Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Appl. Mater. Interfaces, 13(34), 40249-40266. https://doi.org/10.1021/acsami.1c09215
Fantini, M. C. & Guadagni, I. (2021). From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig. Liver. Dis., 53(5), 558-565. https://doi.org/10.1016/j.dld.2021.01.012
Filmus, J. & Kerbel, R. S. (1993). Development of resistance mechanisms to the growth-inhibitory effects of transforming growth factor-β during tumor progression. Current Opinion in Oncology, 5(1), 123-9.
Franza, L., Carusi, V., Nucera, E. & Pandolfi, F. (2021). Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors, 47(2), 181-189. https://doi.org/10.1002/biof.1710
Fu, R., Liu, S., Zhu, M., Zhu, J. & Chen, M. (2023). Apigenin reduces the suppressive effect of exosomes derived from irritable bowel syndrome patients on the autophagy of human colon epithelial cells by promoting ATG14. World J. Surg. Oncol., 21(1), 95. https://doi.org/10.1186/s12957-023-02963-5
Gerges, S. H., Tolba, M. F., Elsherbiny, D. A. & El-Demerdash, E. (2020). The natural flavonoid galangin ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Effect on Toll-like receptor 4, inflammation and oxidative stress. Basic Clin. Pharmacol. Toxicol., 127(1), 10-20. https://doi.org/10.1111/bcpt.13388
Gil-Cardoso, K., Ginés, I., Pinent, M., Ardévol, A., Blay, M. & Terra, X. (2016). Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity | Nutrition Research Reviews | Cambridge Core. Nutrition Research Reviews, 29(2), 234-248. https://doi.org/10.1017/S0954422416000159
Gros, B. & Kaplan, G. G. (2023). Ulcerative Colitis in Adults: A Review. JAMA, 330(10), 951-965. https://doi.org/10.1001/jama.2023.15389
Guazelli, C. F., Fattori, V., Colombo, B. B., Georgetti, S. R., Vicentini, F. T., Casagrande, R., Baracat, M. M. & Verri, W. A., Jr. (2013). Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J. Nat. Prod., 76(2), 200-208. https://doi.org/10.1021/np300670w
Guo, G., Shi, W., Shi, F., Gong, W., Li, F., Zhou, G. & She, J. (2019). Anti-inflammatory effects of eriocitrin against the dextran sulfate sodium-induced experimental colitis in murine model. J. Biochem. Mol. Toxicol., 33(11), e22400. https://doi.org/10.1002/jbt.22400
Guo, K., Ren, J., Gu, G., Wang, G., Gong, W., Wu, X., Ren, H., Hong, Z. & Li, J. (2020). Hesperidin Protects Against Intestinal Inflammation by Restoring Intestinal Barrier Function and Up-Regulating Treg Cells. Mol. Nutr. Food Res., 64(10), e1970058. https://doi.org/10.1002/mnfr.201970058
He, W., Li, Y., Liu, M., Yu, H., Chen, Q., Chen, Y., Ruan, J., Ding, Z., Zhang, Y. & Wang, T. (2018). Citrus aurantium L. and Its Flavonoids Regulate TNBS-Induced Inflammatory Bowel Disease through Anti-Inflammation and Suppressing Isolated Jejunum Contraction. Int. J. Mol. Sci., 19(10), 3057. https://doi.org/10.3390/ijms19103057
Hu, L., Wu, C., Zhang, Z., Liu, M., Maruthi Prasad, E., Chen, Y. & Wang, K. (2019). Pinocembrin Protects Against Dextran Sulfate Sodium-Induced Rats Colitis by Ameliorating Inflammation, Improving Barrier Function and Modulating Gut Microbiota. Front. Physiol., 10, 908. https://doi.org/10.3389/fphys.2019.00908
Hu, Y., Guan, X., He, Z., Xie, Y., Niu, Z., Zhang, W., Wang, A., Zhang, J., Si, C., Li, F. & Hu, W. (2023). Apigenin-7-O-glucoside alleviates DSS-induced colitis by improving intestinal barrier function and modulating gut microbiota. Journal of Functional Foods, 104, 105499. https://doi.org/10.1016/j.jff.2023.105499
Iftikhar, M., Iftikhar, A., Zhang, H., Gong, L. & Wang, J. (2020). Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Research International, 136, 109240. https://doi.org/10.1016/j.foodres.2020.109240
International Agency for Research on Cancer, W. H. O. (2022). Cancer Tomorrow. Retrieved 01-17-2025 from https://gco.iarc.fr/tomorrow/en
Jeffrey, K. L., Camps, M., Rommel, C. & Mackay, C. R. (2007). Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat. Rev. Drug Discov., 6(5), 391-403. https://doi.org/10.1038/nrd2289
Ji, G., Zhang, Y., Yang, Q., Cheng, S., Hao, J., Zhao, X. & Jiang, Z. (2012). Genistein suppresses LPS-induced inflammatory response through inhibiting NF-kappaB following AMP kinase activation in RAW 264.7 macrophages. PLoS One, 7(12), e53101. https://doi.org/10.1371/journal.pone.0053101
Jia, Q., Fang, S., Yang, R., Ling, Y., Mehmood, S., Ni, H. & Gao, Q. (2024). Genistein alleviates dextran sulfate sodium-induced colitis in mice through modulation of intestinal microbiota and macrophage polarization. Eur. J. Nutr., 63(5), 1877-1888. https://doi.org/10.1007/s00394-024-03391-1
Jin, C., Liu, J., Jin, R., Yao, Y., He, S., Lei, M. & Peng, X. (2022). Linarin ameliorates dextran sulfate sodium-induced colitis in C57BL/6J mice via the improvement of intestinal barrier, suppression of inflammatory responses and modulation of gut microbiota. Food Funct., 13(20), 10574-10586. https://doi.org/10.1039/d2fo02128e
Kaufmann, H. J. & Taubin, H. L. (1987). Nonsteroidal anti-inflammatory drugs activate quiescent inflammatory bowel disease. Ann. Intern. Med., 107(4), 513-516. https://doi.org/10.7326/0003-4819-107-4-513
Kis, B., Snipes, J. A., Isse, T., Nagy, K. & Busija, D. W. (2003). Putative cyclooxygenase-3 expression in rat brain cells. J. Cereb. Blood Flow Metab., 23(11), 1287-1292. https://doi.org/10.1097/01.WCB.0000090681.07515.81
Kojima, M., Morisaki, T., Uchiyama, A., Doi, F., Mibu, R., Katano, M. & Tanaka, M. (2001). Association of enhanced cyclooxygenase-2 expression with possible local immunosuppression in human colorectal carcinomas. Ann. Surg. Oncol., 8(5), 458-465. https://doi.org/10.1007/s10434-001-0458-x
Kumar, V. S., Rajmane, A. R., Adil, M., Kandhare, A. D., Ghosh, P. & Bodhankar, S. L. (2014). Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats. J. Biomed. Res., 28(2), 132-145. https://doi.org/10.7555/JBR.27.20120082
Kwon, K. H., Murakami, A., Tanaka, T. & Ohigashi, H. (2005). Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of pro-inflammatory gene expression - PubMed. Biochemical Pharmacology, 69(3), 395-406. https://doi.org/10.1016/j.bcp.2004.10.015
Li, Y. Shen, L. & Luo, H. (2016). Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway - PubMed. International Immunopharmacology, 40, 24-31. https://doi.org/10.1016/j.intimp.2016.08.020
Li, B. L., Zhao, D. Y., Du, P. L., Wang, X. T., Yang, Q. & Cai, Y. R. (2021). Luteolin alleviates ulcerative colitis through SHP-1/STAT3 pathway. Inflamm. Res., 70(6), 705-717. https://doi.org/10.1007/s00011-021-01468-9
Li, M. & Weigmann, B. (2023). Effect of a Flavonoid Combination of Apigenin and Epigallocatechin-3-Gallate on Alleviating Intestinal Inflammation in Experimental Colitis Models. Int. J. Mol. Sci., 24(22), 16031. https://doi.org/10.3390/ijms242216031
Li, Y. Y., Wang, X. J., Su, Y. L., Wang, Q., Huang, S. W., Pan, Z. F., Chen, Y. P., Liang, J. J., Zhang, M,L., Xie, X, Q., Wu, Z. Y., Chen, J, Y., Zhou, L. & Luo, X. (2022). Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin., 43(6), 1495-1507. https://doi.org/10.1038/s41401-021-00781-7
Liu, S. H., Lu, T. H., Su, C. C., Lay, I. S., Lin, H. Y., Fang, K. M., Ho, T. J., Chen, K, L., Su, Y. C., Chiang, W. C. & Chen, Y. W. (2014). Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-kappaB signaling pathway. Am. J. Chin. Med., 42(4), 869-889. https://doi.org/10.1142/S0192415X14500554
Magadan-Corpas, P., Perez-Valero, A., Ye, S., Sordon, S., Huszcza, E., Poplonski, J., Villar, C. J. & Lombo, F. (2024). Gut Microbiota and Inflammation Modulation in a Rat Model for Ulcerative Colitis after the Intraperitoneal Administration of Apigenin, Luteolin, and Xanthohumol. Int. J. Mol. Sci., 25(6), 3236. https://doi.org/10.3390/ijms25063236
Marquez-Flores, Y. K., Villegas, I., Cardeno, A., Rosillo, M. A. & Alarcon-de-la-Lastra, C. (2016). Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem., 30, 143-152. https://doi.org/10.1016/j.jnutbio.2015.12.002
Marzocchella, L., Fantini, M., Benvenuto, M., Masuelli, L., Tresoldi, I., Modesti, A. & Bei, R. (2011). Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents. Recent Pat. Inflamm. Allergy Drug Discov., 5(3), 200-220. https://doi.org/10.2174/187221311797264937
Morimoto, M., Watanabe, T., Yamori, M., Takebe, M. & Wakatsuki, Y. (2009). Isoflavones regulate innate immunity and inhibit experimental colitis. J. Gastroenterol. Hepatol., 24(6), 1123-1129. https://doi.org/10.1111/j.1440-1746.2008.05714.x
Nakase, H., Sato, N., Mizuno, N. & Ikawa, Y. (2022). The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev., 21(3), 103017. https://doi.org/10.1016/j.autrev.2021.103017
Nishitani, Y., Yamamoto, K., Yoshida, M., Azuma, T., Kanazawa, K., Hashimoto, T. & Mizuno, M. (2013). Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-kappaB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors, 39(5), 522-533. https://doi.org/10.1002/biof.1091
Park, M. Y., Ji, G. E. & Sung, M. K. (2012). Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig. Dis. Sci., 57(2), 355-363. https://doi.org/10.1007/s10620-011-1883-8
Pavlick, K. P., Laroux, F. S., Fuseler, J., Wolf, R. E., Gray, L., Hoffman, J. & Grisham, M. B. (2002). Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic. Biol. Med., 33(3), 311-322. https://doi.org/10.1016/s0891-5849(02)00853-5
Pena-Romero, A. C. & Orenes-Pinero, E. (2022). Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel), 14(7), 1681. https://doi.org/10.3390/cancers14071681
Peralta-Zaragoza, O., Lagunas-Martínez, A. & Madrid-Marina, V. (2001). Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer. Salud Pública de México, 43(4), 340-351.
Piechota-Polanczyk, A. & Fichna, J. (2014). Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch. Pharmacol., 387(7), 605-620. https://doi.org/10.1007/s00210-014-0985-1
Polat, F. R. & Karaboga, I. (2019). Immunohistochemical examination of anti-inflammatory and anti-apoptotic effects of hesperetin on trinitrobenzene sulfonic acid induced colitis in rats. Biotech. Histochem., 94(3), 151-158. https://doi.org/10.1080/10520295.2018.1530454
Porath, D., Riegger, C., Drewe, J. & Schwager, J. (2005). Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. J. Pharmacol. Exp. Ther., 315(3), 1172-1180. https://doi.org/10.1124/jpet.105.090167
Poritz, L. S., Harris, L. R., 3rd, Kelly, A. A. & Koltun, W. A. (2011). Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig. Dis. Sci., 56(10), 2802-2809. https://doi.org/10.1007/s10620-011-1688-9
Qu, X., Li, Q., Song, Y., Xue, A., Liu, Y., Qi, D. & Dong, H. (2020). Potential of myricetin to restore the immune balance in dextran sulfate sodium-induced acute murine ulcerative colitis. J. Pharm. Pharmacol., 72(1), 92-100. https://doi.org/10.1111/jphp.13197
Radulovic, K., Normand, S., Rehman, A., Delanoye-Crespin, A., Chatagnon, J., Delacre, M., Waldschmitt, N., Poulin, L. F., Iovanna, J., Ryffel, B., Rosenstiel, P. & Chamaillard, M. (2018). A dietary flavone confers communicable protection against colitis through NLRP6 signaling independently of inflammasome activation. Mucosal Immunol., 11(3), 811-819. https://doi.org/10.1038/mi.2017.87
Ran, Z. H., Chen, C. & Xiao, S. D. (2008). Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed. Pharmacother., 62(3), 189-196. https://doi.org/10.1016/j.biopha.2008.02.002
Ren, J., Yue, B., Wang, H., Zhang, B., Luo, X., Yu, Z., Zhang, J., Ren, Y., Mani, S., Wang, Z. & Dou, W. (2020). Acacetin Ameliorates Experimental Colitis in Mice via Inhibiting Macrophage Inflammatory Response and Regulating the Composition of Gut Microbiota. Front. Physiol., 11, 577237. https://doi.org/10.3389/fphys.2020.577237
Rezaie, A., Parker, R. D. & Abdollahi, M. (2007). Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig. Dis. Sci., 52(9), 2015-2021. https://doi.org/10.1007/s10620-006-9622-2
Riemschneider, S., Hoffmann, M., Slanina, U., Weber, K., Hauschildt, S. & Lehmann, J. (2021). Indol-3-Carbinol and Quercetin Ameliorate Chronic DSS-Induced Colitis in C57BL/6 Mice by AhR-Mediated Anti-Inflammatory Mechanisms. Int. J. Environ. Res. Public. Health, 18(5), 2262. https://doi.org/10.3390/ijerph18052262
Sahu, B. D., Kumar, J. M. & Sistla, R. (2016). Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-kappaB signaling. J. Nutr. Biochem., 28, 171-182. https://doi.org/10.1016/j.jnutbio.2015.10.004
Sanchez-Munoz, F., Dominguez-Lopez, A. & Yamamoto-Furusho, J. K. (2008). Role of cytokines in inflammatory bowel disease. World J. Gastroentero.l, 14(27), 4280-4288. https://doi.org/10.3748/wjg.14.4280
Sangaraju, R., Nalban, N., Alavala, S., Rajendran, V., Jerald, M. K. & Sistla, R. (2019). Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice. Inflamm. Res., 68(8), 691-704. https://doi.org/10.1007/s00011-019-01252-w
Schwanke, R. C., Marcon, R., Meotti, F. C., Bento, A. F., Dutra, R. C., Pizzollatti, M. G. & Calixto, J. B. (2013). Oral administration of the flavonoid myricitrin prevents dextran sulfate sodium-induced experimental colitis in mice through modulation of PI3K/Akt signaling pathway. Mol. Nutr. Food. Res., 57(11), 1938-1949. https://doi.org/10.1002/mnfr.201300134
Seibel, J., Molzberger, A. F., Hertrampf, T., Laudenbach-Leschowski, U. & Diel, P. (2009). Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur. J. Nutr., 48(4), 213-220. https://doi.org/10.1007/s00394-009-0004-3
Sergent, T., Piront, N., Meurice, J., Toussaint, O. & Schneider, Y. J. (2010). Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chem. Biol. Interact., 188(3), 659-667. https://doi.org/10.1016/j.cbi.2010.08.007
Shafik, N. M., Gaber, R. A., Mohamed, D. A. & Ebeid, A. M. (2019). Hesperidin modulates dextran sulfate sodium-induced ulcerative colitis in rats: Targeting sphingosine kinase-1- sphingosine 1 phosphate signaling pathway, mitochondrial biogenesis, inflammation, and apoptosis. J. Biochem. Mol. Toxicol., 33(6), e22312. https://doi.org/10.1002/jbt.22312
Shah, S. C. & Itzkowitz, S. H. (2022). Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology, 162(3), 715-730 e713. https://doi.org/10.1053/j.gastro.2021.10.035
Sharma, A., Tirpude, N. V., Kumari, M. & Padwad, Y. (2021). Rutin prevents inflammation-associated colon damage via inhibiting the p38/MAPKAPK2 and PI3K/Akt/GSK3beta/NF-kappaB signalling axes and enhancing splenic Tregs in DSS-induced murine chronic colitis. Food Funct., 12(18), 8492-8506. https://doi.org/10.1039/d1fo01557e
Shen, J., Cheng, J., Zhu, S., Zhao, J., Ye, Q., Xu, Y., Dong, H. & Zheng, X. (2019). Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis. Int. Immunopharmacol, 73, 193-200. https://doi.org/10.1016/j.intimp.2019.04.052
Shen, J., Li, N. & Zhang, X. (2019). Daidzein Ameliorates Dextran Sulfate Sodium-Induced Experimental Colitis in Mice by Regulating NF-kappaB Signaling. J. Environ. Pathol. Toxicol. Oncol., 38(1), 29-39. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018027531
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L. & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., 383, 132531. https://doi.org/10.1016/j.foodchem.2022.132531
Shin, E. K., Kwon, H. S., Kim, Y. H., Shin, H. K. & Kim, J. K. (2009). Chrysin, a natural flavone, improves murine inflammatory bowel diseases. Biochem. Biophys. Res. Commun., 381(4), 502-507. https://doi.org/10.1016/j.bbrc.2009.02.071
Terabe, M., Park, J. M. & Berzofsky, J. A. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol. Immunother., 53(2), 79-85. https://doi.org/10.1007/s00262-003-0445-0
Vezza, T., Rodriguez-Nogales, A., Algieri, F., Utrilla, M. P., Rodriguez-Cabezas, M. E. & Galvez, J. (2016). Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients, 8(4), 211. https://doi.org/10.3390/nu8040211
Vukelic, I., Detel, D., Baticic, L., Potocnjak, I. & Domitrovic, R. (2020). Luteolin ameliorates experimental colitis in mice through ERK-mediated suppression of inflammation, apoptosis and autophagy. Food Chem. Toxicol., 145, 111680. https://doi.org/10.1016/j.fct.2020.111680
Wang, H., Huang, X., Xia, S., Chen, C., Chen, X., Zhang, Y., Farag, M. A., Xiao J. & Nie, S. (2023). Celery soluble dietary fiber antagonizes flavonoids ameliorative effect on dextran-sodium-sulfate-induced colitis in mice. J. Adv. Res., 52, 73-88. https://doi.org/10.1016/j.jare.2023.01.013
Wang, J., Li, D., Cang, H. & Guo, B. (2019). Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med., 8(10), 4709-4721. https://doi.org/10.1002/cam4.2327
Wang, L., Li, M., Gu, Y., Shi, J., Yan, J., Wang, X., Li B, Wang, B., Zhong, W. & Cao, H. (2024). Dietary flavonoids-microbiota crosstalk in intestinal inflammation and carcinogenesis. J. Nutr. Biochem., 125, 109494. https://doi.org/10.1016/j.jnutbio.2023.109494
Wang, S., Cao, M., Xu, S., Shi, J., Mao, X., Yao, X. & Liu, C. (2020). Luteolin Alters Macrophage Polarization to Inhibit Inflammation. Inflammation, 43(1), 95-108. https://doi.org/10.1007/s10753-019-01099-7
Weng, C. J. & Yen, G. C. (2012). Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev., 31(1-2), 323-351. https://doi.org/10.1007/s10555-012-9347-y
Wijnands, A. M., de Jong, M. E., Lutgens, M., Hoentjen, F., Elias, S. G., Oldenburg, B. & Dutch Initiative on Crohn and Colitis (ICC). (2021). Prognostic Factors for Advanced Colorectal Neoplasia in Inflammatory Bowel Disease: Systematic Review and Meta-analysis. Gastroenterology, 160(5), 1584-1598. https://doi.org/10.1053/j.gastro.2020.12.036
Xu, L., Yang, Z. L., Li, P. & Zhou, Y. Q. (2009). Modulating effect of Hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine, 16(10), 989-995. https://doi.org/10.1016/j.phymed.2009.02.021
Xu, Z., Wei, C., Zhang, R. U., Yao, J., Zhang, D. & Wang, L. (2015). Epigallocatechin-3-gallate-induced inhibition of interleukin-6 release and adjustment of the regulatory T/T helper 17 cell balance in the treatment of colitis in mice. Exp. Ther. Med., 10(6), 2231-2238. https://doi.org/10.3892/etm.2015.2824
Xuan, H., Ou, A., Hao, S., Shi, J. & Jin, X. (2020). Galangin Protects against Symptoms of Dextran Sodium Sulfate-induced Acute Colitis by Activating Autophagy and Modulating the Gut Microbiota. Nutrients, 12(2), 347. https://doi.org/10.3390/nu12020347
Xue, J., Yu, X., Xue, L., Ge, X., Zhao, W. & Peng, W. (2019). Intrinsic beta-catenin signaling suppresses CD8(+) T-cell infiltration in colorectal cancer. Biomed. Pharmacother., 115, 108921. https://doi.org/10.1016/j.biopha.2019.108921
Xue, J. C., Yuan, S., Meng, H., Hou, X. T., Li, J., Zhang, H. M., Chen, L. L., Zhang, C, H., & Zhang, Q. G. (2023). The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed. Pharmacother., 158, 114086. https://doi.org/10.1016/j.biopha.2022.114086
Yao, J., Liu, T., Chen, R. J., Liang, J., Li, J. & Wang, C. G. (2020). Sphingosine-1-phosphate signal transducer and activator of transcription 3 signaling pathway contributes to baicalein-mediated inhibition of dextran sulfate sodium-induced experimental colitis in mice. Chin. Med. J. (Engl.), 133(3), 292-300. https://doi.org/10.1097/CM9.0000000000000627
Yoshiro, I., Kenji, K. & Yoshiharu, S. (2019). Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. International Journal of Molecular Sciences, 20(23), 5822. https://doi.org/10.3390/ijms20235822
Yu, F. Y., Huang, S. G., Zhang, H. Y., Ye, H., Chi, H. G., Zou, Y., Lv, R. X. & Zheng, X. B. (2014). Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients. World J. Gastroenterol., 20(41), 15299-15309. https://doi.org/10.3748/wjg.v20.i41.15299
Yue, B., Ren, J., Yu, Z., Luo, X., Ren, Y., Zhang, J., Mani S, Wang, Z. & Dou, W. (2020). Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-kappaB pathway and promoting intestinal barrier. Biosci. Rep., 40(7), BSR20200986. https://doi.org/10.1042/BSR20200986
Zhang, H., Deng, A., Zhang, Z., Yu, Z., Liu, Y., Peng, S., Wu, L., Qin, H. & Wang, W. (2016). The protective effect of epicatechin on experimental ulcerative colitis in mice is mediated by increasing antioxidation and by the inhibition of NF-kappaB pathway. Pharmacol. Rep., 68(3), 514-520. https://doi.org/10.1016/j.pharep.2015.12.011
Zhang, J., Lei, H., Hu, X. & Dong, W. (2020). Hesperetin ameliorates DSS-induced colitis by maintaining the epithelial barrier via blocking RIPK3/MLKL necroptosis signaling. Eur. J. Pharmacol., 873, 172992. https://doi.org/10.1016/j.ejphar.2020.172992
Zhang, Y., Johnson, A. C., Su, C., Zhang, M., Jurgens, M. D., Shi, Y. & Lu, Y. (2017). Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem? Chemosphere, 178, 11-18. https://doi.org/10.1016/j.chemosphere.2017.02.137
Zhao, J., Hong, T., Dong, M., Meng, Y. & Mu, J. (2013). Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Mol. Med. Rep., 7(2), 565-570. https://doi.org/10.3892/mmr.2012.1225
Zhou, R. W., Harpaz, N., Itzkowitz, S. H. & Parsons, R. E. (2023). Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis, 12(1), 48. https://doi.org/10.1038/s41389-023-00492-0
Zhu, L., Shen, H., Gu, P. Q., Liu, Y. J., Zhang, L. & Cheng, J. F. (2020). Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation. Exp. Ther. Med., 20(1), 581-590. https://doi.org/10.3892/etm.2020.8718
Zhu, L., Xu, L. Z., Zhao, S., Shen, Z. F., Shen, H. & Zhan, L. B. (2020). Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. Appl. Microbiol. Biotechnol., 104(12), 5449-5460. https://doi.org/10.1007/s00253-020-10527-w
Zhu, W., Jin, Z., Yu, J., Liang, J., Yang, Q., Li, F., Shi, X., Zhu, X. & Zhang, X. (2016). Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int. Immunopharmacol., 35, 119-126. https://doi.org/10.1016/j.intimp.2016.03.030
Zou, Y., Dai, S. X., Chi, H. G., Li, T., He, Z. W., Wang, J., Ye, C, G., Huang, G. L., Zhao, B., Li, W. Y., Wan, Z., Feng, J. S. & Zheng, X. B. (2015). Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm. Arch. Pharm. Res., 38(10), 1873-1887. https://doi.org/10.1007/s12272-014-0486-2
Zuo, T., Yue, Y., Wang, X., Li, H. & Yan, S. (2021). Luteolin Relieved DSS-Induced Colitis in Mice via HMGB1-TLR-NF-kappaB Signaling Pathway. Inflammation, 44(2), 570-579. https://doi.org/10.1007/s10753-020-01354-2
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.