Resumen
Los sistemas de dos componentes (SDC), son el principal sistema de transducción de señales empleado por las bacterias y otros microorganismos para detectar cambios en el medio ambiente y generar una respuesta adaptativa. El mecanismo básico de funcionamiento de estos sistemas radica en reacciones de fosforilación y de-fosforilación entre una proteína sensora con actividad cinasa (CS) y su regulador de respuesta (RR) específico. Sin embargo, la participación de proteínas accesorias y cofactores, que frecuentemente participan en la señalización o intervienen en la regulación cruzada de SDC diferentes, integra a estos sistemas en complejas redes de señalización que operan de manera conjunta para responder con eficacia a los requerimientos fisiológicos del organismo. En la presente revisión se exponen algunos de los mecanismos de regulación que pueden ser adoptados por los SDC, ejemplificados con el SDC BarA/UvrY de Escherichia coli y los sistemas ortólogos en otras bacterias, que, aunque comparten un alto grado de homología, exhiben una gran versatilidad y adaptación en sus mecanismos de regulación, producto de las condiciones particulares a las que se enfrentan los diferentes géneros bacterianos que los contienen.
Citas
Albanesi, D., Martin, M., Trajtenberg, F., Mansilla, M. C., Haouz, A., Alzari, P. M., de Mendoza, D. & Buschiazzo, A. (2009) Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc. Natl. Acad. Sci. USA, 106(38),16185–16190. DOI: 10.1073/pnas.0906699106
Alm, E., Huang, K. & Arkin, A. (2006). The evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation. PLoS Comput. Biol., 2(11), e143. DOI: 10.1371/journal.pcbi.0020143
Álvarez, A. & Georgellis, D. (2016). Características y funcionamiento de los Sistemas de Dos Componentes de organismos procariotas y eucariotas. Química Viva, 15(3), 11-27. http://www.quimicaviva.qb.fcen.uba.ar/v15n3/E0049.pdf
Álvarez, A., Rodriguez, C., Gonzalez Chavez, R. & Georgellis, D. (2021). The Escherichia coli two-component signal sensor BarA binds protonated acetate via a conserved hydrophobic-binding pocket. J. Biol. Chem., 297(6), 101383. DOI: 10.1016/j.jbc.2021.101383
Bordi, C., Lamy, M. C., Ventre, I., Termine, E., Hachani, A., Fillet, S., Roche, B., Blevers, S., Mejean, V., Lazdunski, A. & Filloux, A. (2010). Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol. Microbiol., 76(6), 1427–1443. DOI: 10.1111/j.1365-2958.2010.07146.x
Buelow, D. & Raivio, T. (2010). Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol. Microbiol., 75(3), 547-566. DOI: 10.1111/j.1365-2958.2009.06982.x
Burbulys, D., Trach, K. A. & Hoch, J. A. (1991). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64(3), 545–552. DOI: 10.1016/0092-8674(91)90238-t
Camacho, M. I., Georgellis, D. & Álvarez, A. (2016). El circuito regulatorio BarA/UvrY-CsrA en Escherichia coli y sus homólogos en las y-proteobacterias. TIP Revista Especializada en Ciencias Químico-Biológicas, 19(1), 15-23. DOI.org/10.1016/j.recqb.2016.02.002
Camacho, M. I., Álvarez, A. F., Chavez, R. G., Romeo, T., Merino, E. & Georgellis, D. (2015). Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J. Bacteriol., 197(5), 983-991. DOI: 10.1128/JB.02325-14
Castañeda, M., Sanchez, J., Moreno, S., Nuñez, C. & Espin, G. (2001). The global regulators GacA and sigma (S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J. Bacteriol., 183(23), 6787-6793. DOI: 10.1128/JB.183.23.6787-6793.2001
Chambonnier, G., Roux, L., Redelberger, D., Fadel, F., Filloux, A., Sivaneson, M., Bentzamann, S. & Bordi, C. (2016) The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet., 12(5), e1006032. DOI:10.1371/journal.pgen.1006032
Chávez, R., Alvarez, F., Romeo, T. & Georgellis, D. (2010). The physiological stimulus for the BarA sensor kinase. J. Bacteriol., 192(7), 2009-2012. DOI: 10.1128/JB.01685-09
Contreras, F. U., Camacho, M. I., Pannuri, A., Romeo, T., Alvarez, A. & Georgellis, D. (2023). Spatiotemporal regulation of the BarA/UvrY two-component signaling system. J. Biol. Chem., 299(6), 1-11. DOI: 10.1016/j.jbc.2023.104835
Donnenberg, M. & Kaper, J. (1991). Construction of a deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Inmmun., 59(12), 4310-4317. DOI: 10.1128/iai.59.12.4310-4317.1991
Eguchi, Y., Itou, J., Yamane, M., Demizu, R., Yamato, F., Okada, A., Mori, H., Kato, A. & Utsumi, R. (2007). B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc. Natl. Acad. Sci. USA, 104(47), 18712-7. DOI: 10.1073/pnas.0705768104
Ferris, H. U., Dunin-Horkawicz, S., Mondéjar, L. G., Hulko, M., Hantke, K., Martin, J., Schultz, J. E., Zeth, K., Lupas, A. N. & Coles, M. (2011). The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure, 19(3), 378-85. DOI: 10.1016/j.str.2011.01.006
Galperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol., 5(35). DOI: 10.1186/1471-2180-5-35
Galperin, M. Y. (2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol., 188(12), 4169-4182. DOI: 10.1128/JB.01887-05
Galperin, M. Y. (2010). Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol., 13(2), 150-159. DOI: 10.1016/j.mib.2010.01.005
Gao, R. & Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology, 63, 133–154. DOI: 10.1146/annurev.micro.091208.073214
Georgellis, D., Kwon, O. & Lin, E. C. (2001). Quinones as the redox signal for the Arc two-Component system of bacteria. Science, 292(5525), 2314-6. DOI:10.1126/science.1059361
Georgellis, D., Lynch, A. S. & Lin, E. C. (1997). In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J. Bacteriol., 179(17), 5429–5435. DOI:10.1128/jb.179.17.5429-5435.1997
Georgellis, D., Kwon, O., De Wulf, P. & Lin, E. C. (1998). Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem., 273(49), 32864–32869. DOI: 10.1126/science.1059361
Goodman, A., Merighi, M., Hyodo, M., Veentre, I., Filloux, A. & Lory, S. (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in bacterial pathogens. Genes Dev., 23, 249-2559. DOI: 10.1101/gad.1739009
Hsu, J. L., Chen, H. C., Peng, H. L. & Chang, H. Y. (2008) Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J. Biol. Chem., 283(5), 9933–9944. DOI: 10.1074/jbc.M708836200
Hutton, M. L., D’Costa, K., Rossiter, A. E., Wang, L., Turner, L., Steer, D. L., Masters, S. L., Croker, B. A., Kaparakis-Liaskos, M. & Ferrero, R. L. (2017). A Helicobacter pylori homolog of eukaryotic flotillin is involved in cholesterol accumulation, epithelial cell responses and host colonization. Front. Cell Infect. Microbiol., 7(219). DOI: 10.3389/fcimb.2017.00219
Ishige, K., Nagasawa, S., Tokishita, S. & Mizuno, T. (1994). A novel device of bacterial signal transducers. EMBO J., 13(21), 5195–5202. DOI: 10.1002/j.1460-2075.1994.tb06850.x
Ishii, E. & Eguchi, Y. (2021). Diversity in sensing and signaling of bacterial sensor histidine kinases. Biomolecules, 11(1524). DOI: 10.3390/biom11101524
Kato, M., Mizuno, T., Shimizu, T. & Hakoshima, T. (1997). Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell, 88(5), 717-723. DOI: 10.1016/s0092-8674(00)81914-5
Kenney, L. J. (2010) How important is the phosphatase activity of sensor kinases? Curr. Opin. Microbiol., 13(2), 168–176. DOI: 10.1016/j.mib.2010.01.013
Kofoid, E. C. & Parkinson, J. S. (1988) Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. U. S. A., 85(14), 4981–4985. DOI: 10.1073/pnas.85.14.4981
Kong, W., Chen, L., Zhao, J., Shen, T., Surette, M. G., Shen, L. & Duan, K. (2013). Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol. Microbiol., 88(4), 784–97. DOI: 10.1111/mmi.12223
Langhorst, M. F., Reuter, A. & Stuermer, C. A. (2005). Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell. Mol. Life Sci., 62(19-20), 2228–2240. DOI: 10.1007/s00018-005-5166-4
Lapouge, K., Schubert, M., Allain, F. & Haas, D. (2007). Gac/Rsm signal transduction pathway of y-proteobacteria: from RNA recognition to regulation of social behavior. Mol. Microbiol., 67(2), 241-253. DOI: 10.1111/j.1365-2958.2007.06042.x
Lawhon, S. D., Murer, R., Suyemoto, M. & Altier, C. (2002). Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol., 46(5), 1451-1464. DOI: 10.1046/j.1365-2958.2002.03268.x
Lippa, A. M. & Goulian, M. (2009). Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet., 5(12), e1000788. DOI: 10.1371/journal.pgen.1000788
Lopez, D. & Koch, G. (2017). Exploring functional membrane microdomains in bacteria: an overview. Curr. Opin. Microbiol., 36, 76–84. DOI: 10.1016/j.mib.2017.02.001
Malpica, R., Franco, B., Rodríguez, C., Kwon, O. & Georgellis, D. (2004). Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc. Natl. Acad. Sci. U S A, 101(36), 13318–13323. DOI: 10.1073/pnas.0403064101
Matsubara, M. & Mizuno, T. (1999). EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci. Biotechnol. Biochem., 63(2), 408-414. DOI: 10.1271/bbb.63.408
Mizuno, T. (1997). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res., 46(2), 161–168. DOI: 10.1093/dnares/4.2.161
Moolenaar, G. F., van Sluis, C. A., Backendorf, C. & van de Putte, P. (1987). Regulation of the Escherichia coli excision repair gene uvrC. Overlap between the uvrC structural gene and the region coding for a 24 kD protein. Nucleic Acids Res., 15(10), 4273-4289. DOI: 10.1093/nar/15.10.4273
Mukhopadhyay, S., Audia, J. P., Roy, R. N. & Schellhorn, H. E. (2000). Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol. Microbiol., 37(2), 371–381. DOI: 10.1046/j.1365-2958.2000.01999.x
Nagasawa, S., Tokishita, S, Aiba, H. & Mizuno, T. (1992). A novel sensor regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol. Microbiol., 6(6), 799–807. DOI: 10.1111/j.1365-2958.1992.tb01530.x
Nixon, B. T., Ronson, C. W. & Ausubel, F. M. (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 83(20), 7850–7854. DOI: 10.1073/pnas.83.20.7850
O’Malley, M. R., Chien, C. F., Peck, S. C., Lin, N. C. & Anderson, J. C. (2020). A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000. Mol. Plant. Pathol., 21(1), 139-144. DOI: 10.1111/mpp.12876
OMS. 2017. Lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos.https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgentlyneeded#:~:text=Entre%20tales%20bacterias%20se%20incluyen,la%20corriente%20sangu%C3%ADnea%20y%20neumon%C3%ADas.
O’Toole, G. & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30(2), 295-304. DOI: 10.1046/j.1365-2958.1998.01062.x
Peña-Sandoval, G. R., Kwon, O. & Georgellis, D. (2005). Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. J. Bacteriol., 187(9), 3267–3272. DOI: 10.1128/JB.187.9.3267-3272.2005
Pernestig, A. K., Melefors, O. & Georgellis, D. (2001). Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J. Biol. Chem., 276(1), 225-231. DOI: 10.1074/jbc.M001550200
Pourciau, C., Lai, Y. J., Gorelik, M., Babitzke, P. & Romeo, T. (2020). Diverse mechanisms and circuitry for global regulation by the RNA-binding protein CsrA. Front. Microbiol., 11, 601352. DOI: 10.3389/fmicb.2020.601352
Saita, E., Albanesi, D. & de Mendoza, D. (2016). Sensing membrane thickness: Lessons learned from cold stress. Biochim. Biophys. Acta, 1861, 837-846. DOI: 10.1016/j.bbalip.2016.01.003
Salvail, H. & Groisman, E. A. (2020) The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica. PLoS Genet., 16(5), e1008722. DOI: 10.1371/journal.pgen.1008722
Simons, K. & Toomre, D. (2000). Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol., 1(1), 31–39. DOI: 10.1038/35036052
Skerker, J. M., Prasol, M. S., Perchuk, B. S., Biondi, E. G. & Laub, M. T. (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: A system-level analysis. PLoS Biol., 3(10), e334. DOI: 10.1371/journal.pbio.0030334
Steiner, B. D., Eberly, A. R., Hurst, M. N., Zhang, E. W., Green, H. D., Behr, S., Jung, K. & Hadjifrangiskou, M. (2018). Evidence of cross-regulation in two closely related pyruvate-sensing systems in uropathogenic Escherichia coli. J. Membr. Biol., 251(1), 65-74. DOI: 10.1007/s00232-018-0014-2
Stock, A. M., Robinson, V. L. & Goudreau, P. N. (2000). Two-component signal transduction. Annu. Rev. Biochem., 69, 183–215. DOI: 10.1146/annurev.biochem.69.1.183
Suzuki, K., Wang, X., Weilbacher, T., Pernestig, A. K., Melefors, O., Georgellis, D., Babitzke, P. & Romeo, T. (2002). Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol., 184(18), 5130–5140. DOI: 10.1128/JB.184.18.5130-5140.2002
Takeuchi, K., Kiefer, P., Reimmann, C., Keel, C., Dubuis, C., Rolli, J., Vorholt, J. A. & Haas, D. (2009). Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J. Biol. Chem., 284(50), 34976-85. DOI: 10.1074/jbc.M109.052571
Taylor, B. L. & Zhulin, I. B. (1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63(2), 479-506. DOI: 10.1128/MMBR.63.2.479-506.1999
Terán-Melo, J., Rodríguez-Rangel, C., Georgellis, D. & Alvares, A. (2019). Mecanismo de autofosforilación y transfosforilación en sistemas de dos componentes bacterianos. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1-11. DOI: 10.22201/fesz.23958723e.2019.0.162
Toledo, A., Crowley, J. T., Coleman J. L., Larocca T. J., Chiantia S., London E. & Benach, J. L. (2014). Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi. mBio, 5(2). DOI: 10.1128/mBio.00899-14
Uhl, M. A. & Miller, J. F. (1996). Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J., 15(5), 1028–1036. DOI: 10.1002/j.1460-2075.1996.tb00440.x
Wang, X., Dubey, A. K., Suzuki, K., Baker, C. S., Babitzke, P. & Romeo, T. (2005). CsrA post-transcriptionally Repress pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesion of Escherichia coli. Mol. Microbiol., 56(6), 1648-1663. DOI: 10.1111/j.1365-2958.2005.04648.x
Wang, Q., Zhao, Y., McClelland, M. & Harshey, R. M. (2007). The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J. Bacteriol., 189(23), 8447–57. DOI: 10.1128/JB.01198-07
Wei, C., Tsai, Y., Tsai, S., Lin, C., Chang, C., Lu, C., Huang, H. & Lai, H. (2017). Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochemical and Biophysical Research Communications, 489(1), 70-75. DOI: 10.1016/j.bbrc.2017.05.077
Wessel, A. K., Yoshii, Y., Reder, A., Boudjemaa, R., Szczesna, M., Betton, J. M., Bernal-Bayard, J., Beloin, C., Lopez, D., Völker, U. & Ghigo, J. M. (2023). Escherichia coli SPFH membrane microdomain proteins HflKC contribute to aminoglycoside and oxidative stress tolerance. Microbiol. Spectr., 11(4), e0176723. DOI: 10.1128/spectrum.01767-23
West, A. H. & Stock, A. M. (2001). Histidine kinases and response regulator proteins in two- component signaling systems. Trends Biochem. Sci., 26(6), 369-376. DOI: 10.1016/s0968-0004(01)01852-7
Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R. & Ishihama, A. (2005). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem., 280(2), 1448-1456. DOI: 10.1074/jbc.M410104200
Zere, T. R., Vakulskas, C. A., Leng, Y., Pannuri, A., Potts, A. H., Dias, R., Tang, D., Kolaczkowski, B., Georgellis, D., Ahmer, B. M. & Romeo. T. (2015). Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS One, 10(12), e0145035. DOI: 10.1371/journal.pone.0145035
Zhang, J. & Normarck, S. (1996). Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science, 273(5279), 1234-1236. DOI: 10.1126/science.273.5279.1234
Zschiedrich, C., Keidel, V. & Szurmant, H. (2016). Molecular mechanisms of two-component signal transduction. J. Mol. Biol., 428(19), 3752–3775. DOI: 10.1016/j.jmb.2016.08.003
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.