Resumen
Caenorhabditis elegans es un nematodo con una longitud aproximada de 1mm, que en la década de 1970 fue introducido como modelo experimental y se ha consolidado como una valiosa herramienta en diversos campos del conocimiento: la biología del desarrollo, la bioquímica y la neurobiología; sin embargo, su uso es en particular prominente en la farmacología y en la investigación para el desarrollo de fármacos. Debido a sus numerosas ventajas también se utiliza con amplitud en la investigación del envejecimiento y la toxicología. En esta revisión, se describe su anatomía, ciclo de vida, y las características que lo posicionan como un modelo alternativo y significativo en la investigación toxicológica. Se detalla su aplicación como bioindicador en ecotoxicología, las ventajas de su sistema nervioso simplificado para elucidar el impacto de diversos neurotóxicos y su potencial para investigar la contribución de tóxicos ambientales en la etiología de enfermedades neurodegenerativas y psiquiátricas. Se discute su uso en estudios relacionados con la teoría del origen del desarrollo de la salud y la enfermedad (DOHaD), e investigaciones en epigenética transgeneracional asociada a la exposición a contaminantes ambientales. Finalmente, se reflexiona sobre las ventajas y limitaciones de C. elegans en las investigaciones toxicológicas.
Citas
Altun, Z. F. & Hall, D. H. (2009). Introduction to C. elegans anatomy. Retrieved from DOI:10.3908/wormatlas.1.1
Anbalagan, C., Lafayette, I., Antoniou-Kourounioti, M., Haque, M., King, J., Johnsen, B., Baillie, D., Gutierrez, C., Martín J. A & de Pomerai, D. E (2012). Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology, 21(2), 439-455. DOI:10.1007/s10646-011-0804-0
Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469. DOI:10.1126/science.1108190
Barrière, A. & Félix, M. A. (2005). Natural variation and population genetics of Caenorhabditis elegans. Dec 26. In: WormBook: The Online Review of C. elegans Biology [Internet]. Pasadena (CA): WormBook; 2005-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK19770/
Bollati, V. & Baccarelli, A. (2010). Environmental epigenetics. Heredity, 105(1), 105-112. DOI:10.1038/hdy.2010.2
Boyd, W. A., Smith, M. V., Kissling, G. E. & Freedman, J. H. (2010). Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol. Teratol., 32(1), 68-73. DOI:10.1016/j.ntt.2008.12.004
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71-94. DOI:10.1093/genetics/77.1.71
Byrd, D. T. & Jin, Y. (2021). Wired for insight-recent advances in Caenorhabditis elegans neural circuits. Curr. Opin. Neurobiol., 69, 159-169. DOI:10.1016/j.conb.2021.02.009
Charles, M. A., Delpierre, C. & Breant, B. (2016). [Developmental origin of health and adult diseases (DOHaD): evolution of a concept over three decades]. Med. Sci. (Paris), 32(1), 15-20. DOI:10.1051/medsci/20163201004
Chase, D. L. & Koelle, M. R. (2007). Biogenic amine neurotransmitters in C. elegans. 2007 Feb 20. In: WormBook: The Online Review of C. elegans Biology [Internet]. Pasadena (CA): WormBook; 2005-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK19678/
Chen, H., Chen, X., Gu, Y., Jiang, Y., Guo, H., Chen, J., Yu, J., Wang, C., Chen, C. & Li, H. (2024). Transgenerational reproductive toxicity induced by carboxyl and amino charged microplastics at environmental concentrations in Caenorhabditis elegans: Involvement of histone methylation. Sci. Total Environ., 949, 175132. DOI:10.1016/j.scitotenv.2024.175132
Chen, H., Hua, X., Li, H., Wang, C., Dang, Y., Ding, P. & Yu, Y. (2021). Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere, 272, 129642. DOI:10.1016/j.chemosphere.2021.129642
Chin-Chan, M., Cobos-Puc, L., Alvarado-Cruz, I., Bayar, M. & Ermolaeva, M. (2019). Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population? J. Biol. Inorg. Chem., 24(8), 1285-1303. DOI:10.1007/s00775-019-01739-1
Chin-Chan, M., Navarro-Yepes, J. & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell Neurosci., 9, 124. DOI:10.3389/fncel.2015.00124
Clavijo, A., Kronberg, M. F., Rossen, A., Moya, A., Calvo, D., Salatino, S. E., Pagano, E. A., Morabito, J. A. & Munarriz, E. R. (2016). The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. Sci. Total Environ., 569-570, 252-261. DOI:10.1016/j.scitotenv.2016.06.057
Consortium, C. e. S. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282(5396), 2012-2018. DOI:10.1126/science.282.5396.2012
Conte, D., Jr., MacNeil, L. T., Walhout, A. J. M. & Mello, C. C. (2015). RNA Interference in Caenorhabditis elegans. Curr. Protoc. Mol. Biol., 109, 26 23 21-26 23 30. doi:10.1002/0471142727.mb2603s109
Corsi, A.K., Wightman, B. & Chalfie, M. (2015). A Transparent window into biology: A primer on Caenorhabditis elegans. In: WormBook: The Online Review of C. elegans Biology [Internet]. Pasadena (CA): WormBook; 2005-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK299460/
Daul, A., Andersen, E. & Rougvie, A. (2019). The caenorhabditis genetics center (CGC) and the Caenorhabditis elegans natural diversity resource. In The Biological Resources of Model Organisms (pp. 69-94): CRC Press. Boca Ratón, Estados Unidos de América.
Dengg, M. & van Meel, J. C. (2004). Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J. Pharmacol. Toxicol. Methods, 50(3), 209-214. DOI:10.1016/j.vascn.2004.04.002
Dickinson, H., Moss, T. J., Gatford, K. L., Moritz, K. M., Akison, L., Fullston, T., Hryciw, D.H., Maloney, C. A., Morris, M. J., Wooldridge, A. L., Schjenken, J. E., Robertson. S. A., Waddell, B. J., Mark, P. J. Wyrwoll, C. S., Ellery, S. J. Thornburg, K. L., Muhlhauster, B. S. & Morrison, J. L. (2016). A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J. Dev. Orig. Health Dis., 7(5), 449-472. DOI:10.1017/S2040174416000477
Dwyer, D. S. (2018). Crossing the Worm-Brain Barrier by Using Caenorhabditis elegans to Explore Fundamentals of Human Psychiatric Illness. Mol. Neuropsychiatry, 3(3), 170-179. DOI:10.1159/000485423
Emmons, S. W. (2015). The beginning of connectomics: a commentary on White et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis elegans’. Philos. Trans. R.. Soc Lond. B Biol. Sci., 370(1666), 2014039. DOI:10.1098/rstb.2014.0309
Fabian, T. J. & Johnson, T. E. (1994). Production of age-synchronous mass cultures of Caenorhabditis elegans. J. Gerontol., 49(4), B145-156. DOI:10.1093/geronj/49.4.b145
Farboud, B. (2017). Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9. Wiley Interdiscip. Rev. Dev. Biol., 6(6), e287 DOI:10.1002/wdev.287
Gao, S., Chen, W., Zeng, Y., Jing, H., Zhang, N., Flavel, M., Jois, M., Han, J. J., Xian, B. & Li, G. (2018). Classification and prediction of toxicity of chemicals using an automated phenotypic profiling of Caenorhabditis elegans. BMC Pharmacol. Toxicol., 19(1), 18. DOI:10.1186/s40360-018-0208-3
Gjorgjieva, J., Biron, D. & Haspel, G. (2014). Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand? Bioscience, 64(6), 476-486. DOI:10.1093/biosci/biu058
Grandjean, P. & Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. Lancet Neurol., 13(3), 330-338. DOI:10.1016/S1474-4422(13)70278-3
He, X., Liu, J. & Li, G. (2023). Editorial: Role of epigenetics in environmental pollution associated diseases. Frontiers in Genetics, 14, 1266714 DOI:https://doi.org/10.3389/fgene.2023.1266714
Heindel, J. J., Balbus, J., Birnbaum, L., Brune-Drisse, M. N., Grandjean, P., Gray, K., Landringan, P. J., Sly, P. D., Suk, W., Cory Slechta, D., Thompson, C. & Hanson, M. (2015). Developmental Origins of Health and Disease: Integrating Environmental Influences. Endocrinology, 156(10), 3416-3421. DOI:10.1210/EN.2015-1394
Hu, J., Li, X., Lei, L., Cao, C., Wang, D.& He, D. (2020). The Toxicity of (Nano)Microplastics on C. elegans and Its Mechanisms. In D. He & Y. Luo (Eds.), Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges (pp. 259-278). Cham: Springer International Publishing. Switzerland.
Hunt, P. R., Camacho, J. A. & Sprando, R. L. (2020). Caenorhabditis elegans for predictive toxicology. Current Opinion in Toxicology, 23-24, 23-28.
Hunt, P. R., Olejnik, N. & Sprando, R. L. (2012). Toxicity ranking of heavy metals with screening method using adult Caenorhabditis elegans and propidium iodide replicates toxicity ranking in rat. Food Chem. Toxicol., 50(9), 3280-3290. DOI:10.1016/j.fct.2012.06.051
Jiang, Y., Chen, J., Wu, Y., Wang, Q. & Li, H. (2016). Sublethal Toxicity Endpoints of Heavy Metals to the Nematode Caenorhabditis elegans. PLoS One, 11(1), e0148014. DOI:10.1371/journal.pone.0148014
Johnson, T. E. (2003). Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp. Gerontol., 38(11-12), 1329-1332. DOI:10.1016/j.exger.2003.10.020
Kaletta, T. & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov., 5(5), 387-398. DOI:10.1038/nrd2031
Kamath, R. S. & Ahringer, J. (2003). Genome-wide RNAi screening in Caenorhabditis elegans. Methods, 30(4), 313-321. DOI:10.1016/s1046-2023(03)00050-1
Khabib, M. N. H., Sivasanku, Y., Lee, H. B., Kumar, S. & Kue, C. S. (2022). Alternative animal models in predictive toxicology. Toxicology, 465, 153053. DOI:10.1016/j.tox.2021.153053
Kimble, J. & Nüsslein-Volhard C. (2022). The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Dev. Biol., 485, 93-122. DOI: 10.1016/J.ydbio.2022.02.013
Lai, C. H., Chou, C. Y., Chang, L. Y., Liu, C. S. & Lin, W. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res., 10(5), 703-713. DOI:10.1101/gr.10.5.703
Leung, M. C., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M. & Meyer, J. N. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci., 106(1), 5-28. DOI:10.1093/toxsci/kfn121
Li, H., Zeng, L., Wang, C., Shi, C., Li, Y., Peng, Y., Peng. H., Chen, H., Zhang, J., Cheng, B., Chen, C., Xiang, M. & Huang, Y. (2022). Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. Environ. Pollut., 311, DOI: 119927. doi:10.1016/j.envpol.2022.119927
Loer, C. M. & Kenyon, C. J. (1993). Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J. Neurosci., 13(12), 5407-5417. DOI:10.1523/JNEUROSCI.13-12-05407.1993
Lublin, A. L. & Link, C. D. (2013). Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for beta-amyloid peptide-induced toxicity. Drug Discov Today Technol., 10(1), e115-e119. DOI:10.1016/j.ddtec.2012.02.002
Ma, L., Li, X., Liu, C., Yan, W., Ma, J., Petersen, R. B., Peng, A. & Huang, K. (2022). Modelling Parkinson’s Disease in C. elegans: Strengths and Limitations. Curr. Pharm. Des., 28(37), 3033-3048. DOI:10.2174/1381612828666220915103502
Melnikov, K., Kucharikova, S., Bardyova, Z., Botek, N. & Kaiglova, A. (2023). Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol. Res., 72(2), 149-166. DOI:10.33549/physiolres.934977
Mersha, M. D., Sanchez, K. R., Temburni, M. K. & Dhillon, H. S. (2018). Long-term Behavioral and Reproductive Consequences of Embryonic Exposure to Low-dose Toxicants. J. Vis. Exp., (133). DOI:10.3791/56771
Nilsson, E. E., Ben Maamar, M. & Skinner, M. K. (2022). Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet, 8(1), dvac001. DOI:10.1093/eep/dvac001
Nilsson, E. E., Sadler-Riggleman, I. & Skinner, M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environ. Epigenet., 4(2), dvy016. DOI:10.1093/eep/dvy016
Parmar, T. K., Rawtani, D. & Agrawal, Y. K. (2016). Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110–118. DOI:https://doi.org/10.1080/21553769.2016.1162753
Paul, D., Chipurupalli, S., Justin, A., Raja, K. & Mohankumar, S. K. (2020). Caenorhabditis elegans as a possible model to screen anti-Alzheimer’s therapeutics. J. Pharmacol. Toxicol. Methods, 106, 106932. DOI:10.1016/j.vascn.2020.106932
Pulak, R. (2006). Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol. Biol., 351, 275-286. DOI:10.1385/1-59745-151-7:275
Queiros, L., Pereira, J. L., Goncalves, F. J. M., Pacheco, M., Aschner, M. & Pereira, P. (2019). Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a “nobelized worm”. Crit. Rev. Toxicol., 49(5), 411-429. DOI:10.1080/10408444.2019.1626801
Rahmani, A., McMillen, A., Allen, E., Minervini, C. & Chew, Y. L. (2024). Behavioral Tests for Associative Learning in Caenorhabditis elegans. Methods Mol. Biol., 2746, 21-46. DOI:10.1007/978-1-0716-3585-8_2
Riddle, D., Blumenthal, L., Meyer, B. & Priess, J. (1997). C. ellegans II. In D. L. Riddle, T. Blumenthal, B. J. Meyer, & J. R. Priess (Eds.), C. elegans II (2nd ed.). Cold Spring Harbor (NY): Cold Spring Harbor
Rock, K. D. & Patisaul, H. B. (2018). Environmental Mechanisms of Neurodevelopmental Toxicity. Curr. Environ. Health Rep., 5(1), 145-157. DOI:10.1007/s40572-018-0185-0
Rogers, A., Antoshechkin, I., Bieri, T., Blasiar, D., Bastiani, C., Canaran, P., Chan, J., Chen, W. J., Davis, P., Fernandes, J., Fiedler, T. J., Han, M., Harris, T. W., Kishore, R., Lee, R., McKay, S., Muller, H. M., Nakamura, C., Ozersky, P., Petcherski, A., Schindelman, G., Schwarz, E. M., Spooner, W., Tuli, M. A., Van Auken, K., Wang, D., Wang, X., Williams, G., Yook, K., Durbin, R., Stein, L. D., Spieth, J. & Sternberg, P. W. (2008). WormBase 2007. Nucleic Acids Res., 36(Database issue), D612-617. DOI:10.1093/nar/gkm975
Rosenbluth, T. (2024). These Tiny Worms Account for at Least 4 Nobel Prizes. The New York Time Retrieved from https://www.nytimes.com/2024/10/17/science/nobel-prizes-caenorhabditis-elegans.html
Roussos, A., Kitopoulou, K., Borbolis, F. & Palikaras, K. (2023). Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules, 13(3). DOI:10.3390/biom13030478
Ruszkiewicz, J. A., Pinkas, A., Miah, M. R., Weitz, R. L., Lawes, M. J. A., Akinyemi, A. J., Ijomone, O. M. & Aschner, M. (2018). C. elegans as a model in developmental neurotoxicology. Toxicol. Appl. Pharmacol., 354, 126-135. DOI:10.1016/j.taap.2018.03.016
Sachana, M. & Hargreaves, A. (2018). Toxicological Testing: In Vivo and In Vitro Models. In R. Gupta (Ed.), Veterinary Toxicology (Third edition ed., pp. 145-161): Academic Press. Estados Unidos de América.
Sammi, S. R., Jameson, L. E., Conrow, K. D., Leung, M. C. K. & Cannon, J. R. (2022). Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. Frontiers in Toxicology, 4, 826488 DOI:10.3389/ftox.2022.826488
Skinner, M. K. (2008). What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol., 25(1), 2-6. DOI:10.1016/j.reprotox.2007.09.001
Skinner, M. K. (2011). Environmental epigenetic trans-generational inheritance and somatic epigenetic mitotic stability. Epigenetics, 6(7), 838-842. DOI:10.4161/epi.6.7.16537
Stiernagle T. (2006). Maintenance of C. elegans. 2006 Feb 11. In: WormBook: The Online Review of C. elegans Biology [Internet]. Pasadena (CA): WormBook; 2005-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK19649/
Stresser, D. M., Kopec, A. K., Hewitt, P., Hardwick, R. N., Van Vleet, T. R., Mahalingaiah, P. K. S., O’Connell, D., Jenkins, G. J., David, R., Graham, J., Lee, D., Ekert, J., Fullerton, A., Villenave, R., Bajaj, P., Gosset, J. R., Ralston, S. L., Guha, M., Amador-Arjona, A., Khan, K., Agarwal, S., Hasselgren, C., Wang, X., Adams, K., Kaushik, G., Raczynski, A. & Homan, K. A. (2024). Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat. Biomed. Eng., 8(8), 930-935. DOI:10.1038/s41551-023-01154-7
Tang, B., Tong, P., Xue, K. S., Williams, P. L., Wang, J. S. & Tang, L. (2019). High-throughput assessment of toxic effects of metal mixtures of cadmium(Cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. Chemosphere, 234, 232-241. DOI:10.1016/j.chemosphere.2019.05.271
Tejeda-Benitez, L. & Olivero-Verbel, J. (2016). Caenorhabditis elegans, a Biological Model for Research in Toxicology. Rev. Environ. Contam. Toxicol., 237, 1-35. DOI:10.1007/978-3-319-23573-8_1
Thenobelprize.org. (2024). The Nobel Prize in Physiology or Medicine 2024. Retrieved from https://www.nobelprize.org/prizes/medicine/2024/summary/
Weinhouse, C., Truong, L., Meyer, J. N. & Allard, P. (2018). Caenorhabditis elegans as an emerging model system in environmental epigenetics. Environ. Mol. Mutagen., 59(7), 560-575. DOI:10.1002/em.22203
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 314(1165), 1-340. DOI:10.1098/rstb.1986.0056
Williams, P. L. & Dusenbery, D. B. (1988). Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health., 4(4), 469-478. DOI:10.1177/074823378800400406
Wittkowski, P., Marx-Stoelting, P., Violet, N., Fetz, V., Schwarz, F., Oelgeschlager, M., Schonfelder, G. & Vogl, S. (2019). Caenorhabditis elegans As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment-A Comparative Study. Environ. Sci. Technol., 53(21), 12725-12733. DOI:10.1021/acs.est.9b03266
Wu, T., Xu, H., Liang, X. & Tang, M. (2019). Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. Chemosphere, 221, 708-726. DOI:10.1016/j.chemosphere.2019.01.021
Wu, Y. & Luo, Y. (2005). Transgenic C. elegans as a model in Alzheimer’s research. Curr. Alzheimer Res., 2(1), 37-45. DOI:10.2174/1567205052772768
Yu, Z., Chen, X., Zhang, J., Wang, R. & Yin, D. (2013). Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol. Environ. Saf., 88, 178-184. DOI:10.1016/j.ecoenv.2012.11.012
Zhang, X., Zhong, H. Q., Chu, Z. W., Zuo, X., Wang, L., Ren, X. L., Ma, H., Du, R. Y., Ju, J.J., Ye, X. L., Huang, C. P., Zhu, J. H. & Wu, H. M. (2020). Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms. Chemosphere, 252, 126510. DOI:10.1016/j.chemosphere.2020.126510
Zhang, Y., Ye, B. & Wang, D. (2010). Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 59(1), 129-136. DOI:10.1007/s00244-009-9456-y
Zhao, Y., Chen, J., Wang, R., Pu, X. & Wang, D. (2023). A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J. Appl. Toxicol., 43(1), 122-145. DOI:10.1002/jat.4360
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.