Resumen
El Factor de Crecimiento Transformante-beta o TGF-β (Transforming Growth factor-β) es el prototipo más estudiado de una familia de proteínas multifuncionales que regulan, a múltiples, procesos celulares, como la proliferación, la diferenciación y la muerte, en el desarrollo embrionario y en organismos adultos. El TGF-β es también uno de los factores supresores de tumores más potentes, ya que en las células de origen epitelial o hematopoyético inhibe la proliferación celular y promueve la muerte, a diferencia de su desregulación que provoca el desarrollo de la fibrosis, el cáncer y las enfermedades autoinmunes. Esta revisión se enfoca en particular, a la descripción y el análisis de los mecanismos moleculares implicados en la síntesis, secreción, activación y acción del TGF-β, con énfasis en el contexto del cáncer.
Citas
Abdollah, S., Macías-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L. & Wrana, J. L. (1997). TβRI Phosphorylation of Smad2 on Ser465 and Ser467 Is Required for Smad2-Smad4 Complex Formation and Signaling. Journal of Biological Chemistry, 272(44), 27678–27685. https://doi.org/10.1074/JBC.272.44.27678
Ahuja, N., Ashok, C., Natua, S., Pant, D., Cherian, A., Pandkar, M. R., Yadav, P., Narayanan, V. S. S., Mishra, J., Samaiya, A. & Shukla, S. (2020). Hypoxia-induced TGF-β–RBFOX2–ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer, 2(3), zcaa021. https://doi.org/10.1093/NARCAN/ZCAA021
Anaya-Rubio, I., Tecalco-Cruz, A., González-Espinosa, C., Sosa-Garrocho, M., Macias-Silva, M. & Pérez-Calixto, M. P. (2022). Estudio sobre la Secreción de la Citocina TGF-β por Células de Melanoma: Metodologías útiles de fácil implementación y bajo costo. Revista Mexicana de Industria y Salud (REMDIS), 2(15), 45–57. http://fcqgp.ujed.mx/docs/posgrado/remdis-v2-15.pdf
Ashcroft, G. S., Yang, X., Glick, A. B., Weinstein, M., Letterio, J. J., Mizel, D. E., Anzano, M., Greenwell-Wild, T., Wahl, S. M., Deng, C. & Roberts, A. B. (1999). Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biology, 1(5), 260–266. https://doi.org/10.1038/12971
Avila-Rodríguez D., Segura-Villalobos D. L., Ibarra-Sánchez A., González-Espinosa C. & Macías-Silva, M. (2020). TGF-β y células cebadas: reguladores del desarrollo del tumor. TIP Revista Especializada en Ciencias Químico-Biológicas, 23, 1-11. https://doi.org/10.22201/fesz.23958723e.2020.0.200
Baselga, J., Rothenberg, M. L., Tabernero, J., Seoane, J., Daly, T., Cleverly, A., Berry, B., Rhoades, S. K., Ray, C. A., Fill, J., Farrington, D. L., Wallace, L. A., Yingling, J. M., Lahn, M., Arteaga, C. & Carducci, M. (2008). TGF-β signalling-related markers in cancer patients with bone metastasis. Biomarkers, 13(2), 217–236. https://doi.org/10.1080/13547500701676019
Berchem, G., Noman, M. Z., Bosseler, M., Paggetti, J., Baconnais, S., Le cam, E., Nanbakhsh, A., Moussay, E., Mami-Chouaib, F., Janji, B. & Chouaib, S. (2015). Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. OncoImmunology, 5(4), e1062968 (13 pages). https://doi.org/10.1080/2162402X.2015.1062968
Briones-Orta, M. A., Tecalco-Cruz, A. C., Sosa-Garrocho, M., Caligaris, C. & Macías-Silva, M. (2011). Inhibitory Smad7: Emerging roles in health and disease. Current Molecular Pharmacology, 4(2), 141–153. https://doi.org/10.2174/1874467211104020141
Campbell, M. G., Cormier, A., Ito, S., Seed, R. I., Bondesson, A. J., Lou, J., Marks, J. D., Baron, J. L., Cheng, Y. & Nishimura, S. L. (2020). Cryo-EM Reveals Integrin-Mediated TGF-β Activation without Release from Latent TGF-β. Cell, 180(3), 490-501.e16. https://doi.org/10.1016/J.CELL.2019.12.030
Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Crieghton, C. J. & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25, 18. https://doi.org/10.1016/J.NEO.2022.01.001
Chowdhury, R., Webber, J. P., Gurney, M., Mason, M. D., Tabi, Z. & Clayton, A. (2015). Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 6(2), 715. https://doi.org/10.18632/ONCOTARGET.2711
Clayton, A., Mitchell, J. P., Court, J., Linnane, S., Mason, M. D. & Tabi, Z. (2008). Human Tumor-Derived Exosomes Down-Modulate NKG2D Expression. The Journal of Immunology, 180(11), 7249–7258. https://doi.org/10.4049/JIMMUNOL.180.11.7249
Colak, S. & ten Dijke, P. (2017). Targeting TGF-β Signaling in Cancer. Trends in Cancer, 3(1), 56–71. https://doi.org/10.1016/J.TRECAN.2016.11.008
Color-Aparicio, V. M., Tecalco-Cruz, A. C., Delgado-Coello, B., Sosa-Garrocho, M., Mas-Oliva, J., Vázquez-Victorio, G. & Macías-Silva, M. (2024). TGF-β and HIPPO Signaling Pathways Interplay in Distinct Hepatic Contexts. Gene Expression, 23(3), 223–231. https://doi.org/10.14218/GE.2023.00192
Cuende, J., Liénart, S., Dedobbeleer, O., Van Der Woning, B., De Boeck, G., Stockis, J., Huygens, C., Colau, D., Somja, J., Delvenne, P., Hannon, M., Baron, F., Dumoutier, L., Renauld, J. C., De Haard, H., Saunders, M., Coulie, P. G. & Lucas, S. (2015). Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Science Translational Medicine, 7(284), 284ec65. https://doi.org/10.1126/SCITRANSLMED.AAA1983
Danielpour, D. (2024). Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals, 17(4), 533. https://doi.org/10.3390/PH17040533
Dave, H., Shah, M., Trivedi, S. & Shukla, S. (2012). Prognostic utility of circulating transforming growth factor beta 1 in breast cancer patients. International Journal of Biological Markers, 27(1), 53–59. https://doi.org/10.5301/JBM.2011.8736
David, C. J., Huang, Y. H., Chen, M., Su, J., Zou, Y., Bardeesy, N., Iacobuzio-Donahue, C. A. & Massagué, J. (2016). TGF-β Tumor Suppression through a Lethal EMT. Cell, 164(5), 1015–1030. https://doi.org/10.1016/J.CELL.2016.01.009
de Miguel-Perez, D., Russo, A., Gunasekaran, M., Buemi, F., Hester, L., Fan, X., Carter-Cooper, B. A., Lapidus, R. G., Peleg, A., Arroyo-Hernández, M., Cardona, A. F., Naing, A., Hirsch, F. R., Mack, P. C., Kaushal, S., Serrano, M. J., Adamo, V., Arrieta, O. & Rolfo, C. (2023). Baseline extracellular vesicle TGF-β is a predictive biomarker for response to immune checkpoint inhibitors and survival in non–small cell lung cancer. Cancer, 129(4), 521–530. https://doi.org/10.1002/CNCR.34576
de Streel, G., Bertrand, C., Chalon, N., Liénart, S., Bricard, O., Lecomte, S., Devreux, J., Gaignage, M., De Boeck, G., Mariën, L., Van De Walle, I., van der Woning, B., Saunders, M., de Haard, H., Vermeersch, E., Maes, W., Deckmyn, H., Coulie, P. G., van Baren, N. & Lucas, S. (2020). Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer. Nature Communications, 11(1), 1–15. https://doi.org/10.1038/s41467-020-17811-3
de Visser, K. E. & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374–403. https://doi.org/10.1016/J.CCELL.2023.02.016
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C. & He, J. (2024). TGF-β signaling in health, disease and therapeutics. Signal Transduction and Targeted Therapy, 9(1), 1–40. https://doi.org/10.1038/s41392-024-01764-w
Derynck, R. & Weinberg, R. A. (2019). EMT and Cancer: More Than Meets the Eye. Developmental Cell, 49(3), 313–316. https://doi.org/10.1016/J.DEVCEL.2019.04.026
Düchler, M., Czernek, L., Peczek, L., Cypryk, W., Sztiller-Sikorska, M. & Czyz, M. (2019). Melanoma-Derived Extracellular Vesicles Bear the Potential for the Induction of Antigen-Specific Tolerance. Cells, 8(7), 665. https://doi.org/10.3390/CELLS8070665
Edwards, J. P., Fujii, H., Zhou, A. X., Creemers, J., Unutmaz, D. & Shevach, E. M. (2013). Regulation of the Expression of GARP/Latent TGF-β1 Complexes on Mouse T Cells and Their Role in Regulatory T Cell and Th17 Differentiation. The Journal of Immunology, 190(11), 5506–5515. https://doi.org/10.4049/JIMMUNOL.1300199
Edwards, J. P., Thornton, A. M. & Shevach, E. M. (2014). Release of active TGF-β1 from the Latent TGF-β1/GARP complex on T regulatory cells is mediated by Integrin β8. Journal of Immunology, 193(6), 2843. https://doi.org/10.4049/JIMMUNOL.1401102
Falanga, V., Su Wen Qian, V., Danielpour, D., Katz, M. H., Roberts, A. B. & Sporn, M. B. (1991). Hypoxia Upregulates the Synthesis of TGF-β1 by Human Dermal Fibroblasts. Journal of Investigative Dermatology, 97(4), 634–637. https://doi.org/10.1111/1523-1747.EP12483126
Fan, Q. M., Jing, Y. Y., Yu, G. F., Kou, X. R., Ye, F., Gao, L., Li, R., Zhao, Q. D., Yang, Y., Lu, Z. H. & Wei, L. X. (2014). Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Letters, 352(2), 160–168. https://doi.org/10.1016/J.CANLET.2014.05.008
Fricke, F., Michalak, M., Warnken, U., Hausser, I., Schnölzer, M., Kopitz, J. & Gebert, J. (2019a). SILAC-Based Quantification of TGFBR2-Regulated Protein Expression in Extracellular Vesicles of Microsatellite Unstable Colorectal Cancers. International Journal of Molecular Sciences, 20(17), 4162. https://doi.org/10.3390/IJMS20174162
Fricke, F., Mussack. V., Buschmann. D., Hausser I., Pfaffl. M. W., Kopitz J. & Gebert, J. (2019b). TGFBR2-dependent Alterations of microRNA Profiles in Extracellular Vesicles and Parental Colorectal Cancer Cells. International Journal of Oncology, 55, 925–937. https://doi.org/ 10.3892/ijo.2019.4859
García-Rocha, R., Moreno-Lafont, M., Mora-García, M. L., Weiss-Steider, B., Montesinos, J. J., Piña-Sánchez, P. & Monroy-García, A. (2015). Mesenchymal stromal cells derived from cervical cancer tumors induce TGF-β1 expression and IL-10 expression and secretion in the cervical cancer cells, resulting in protection from cytotoxic T cell activity. Cytokine, 76(2), 382–390. https://doi.org/10.1016/J.CYTO.2015.09.001
Gibbons, A. V., Lin, J. E., Kim, G. W., Marszalowicz, G. P., Li, P., Stoecker, B. A., Blomain, E. S., Rattan, S., Snook, A. E., Schulz, S. & Waldman, S. A. (2013). Intestinal GUCY2C prevents TGF-β secretion coordinating desmoplasia and hyperproliferation in colorectal cancer. Cancer Research, 73(22), 6654–6666. https://doi.org/10.1158/0008-5472.CAN-13-0887
Giusti, I., Di Francesco, M., D’Ascenzo, S., Palmerini, M. G., Macchiarelli, G., Carta, G. & Dolo, V. (2018). Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biology & Therapy, 19(8), 722–734. https://doi.org/10.1080/15384047.2018.1451286
Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., Yan, Y., Mao, F., Zhao, C., Shi, Y. & Xu, W. (2012). Gastric Cancer Exosomes Trigger Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells to Carcinoma-Associated Fibroblasts through TGF-β/Smad Pathway. PLoS ONE, 7(12), e52465. https://doi.org/10.1371/JOURNAL.PONE.0052465
Gulley, J. L., Schlom, J., Barcellos-Hoff, M. H., Wang, X. J., Seoane, J., Audhuy, F., Lan, Y., Dussault, I. & Moustakas, A. (2022). Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Molecular Oncology, 16(11), 2117–2134. https://doi.org/10.1002/1878-0261.13146
Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hong, C. S., Muller, L., Whiteside, T. L. & Boyiadzis, M. (2014). Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Frontiers in Immunology, 5, 74687. https://doi.org/10.3389/FIMMU.2014.00160/BIBTEX
Hosseini, R., Hosseinzadeh, N., Asef-Kabiri, L., Akbari, A., Ghezelbash, B., Sarvnaz, H. & Akbari, M. E. (2023). Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Therapy, 30(10), 1309–1322. https://doi.org/10.1038/s41417-023-00638-7
Huang, F., Wan, J., Hu, W. & Hao, S. (2017). Enhancement of Anti-Leukemia Immunity by Leukemia–Derived Exosomes Via Downregulation of TGF-β1 Expression. Cellular Physiology and Biochemistry, 44(1), 240–254. https://doi.org/10.1159/000484677
Jobling, M. F., Mott, J. D., Finnegan, M. T., Jurukovski, V., Erickson, A. C., Walian, P. J., Taylor, S. E., Ledbetter, S., Lawrence, C. M., Rifkin, D. B. & Barcellos-Hoff, M. H. (2006). Isoform-Specific Activation of Latent Transforming Growth Factor β (LTGF-β) by Reactive Oxygen Species. Radiation Research, 166(6), 839–848. https://doi.org/10.1667/RR0695.1
Jullien, P., Berg, T. M. & Lawrence, D. A. (1989). Acidic cellular environments: Activation of latent tgf-β and sensitization of cellular responses to tgf-β and egf. International Journal of Cancer, 43(5), 886–891. https://doi.org/10.1002/IJC.2910430525
Kaartinen, V., Voncken, J. W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N. & Groffen, J. (1995). Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction. Nature Genetics, 11(4), 415–421. https://doi.org/10.1038/ng1295-415
Kavsak, P., Rasmussen, R. K., Causing, C. G., Bonni, S., Zhu, H., Thomsen, G. H. & Wrana, J. L. (2000). Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that Targets the TGFβ Receptor for Degradation. Molecular Cell, 6(6), 1365–1375. https://doi.org/10.1016/S1097-2765(00)00134-9
Kelly, A., Gunaltay, S., McEntee, C. P., Shuttleworth, E. E., Smedley, C., Houston, S. A., Fenton, T. M., Levison, S., Mann, E. R. & Travis, M. A. (2018). Human monocytes and macrophages regulate immune tolerance via integrin αvβ8–mediated TGFβ activation. Journal of Experimental Medicine, 215(11), 2725–2736. https://doi.org/10.1084/JEM.20171491
Kim, J., Kim, T. Y., Lee, M. S., Mun, J. Y., Ihm, C. & Kim, S. A. (2016). Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochemical and Biophysical Research Communications, 478(2), 643–648. https://doi.org/10.1016/J.BBRC.2016.07.124
Kloss, C. C., Lee, J., Zhang, A., Chen, F., Melenhorst, J. J., Lacey, S. F., Maus, M. V., Fraietta, J. A., Zhao, Y. & June, C. H. (2018). Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Molecular Therapy, 26(7), 1855–1866. https://doi.org/10.1016/J.YMTHE.2018.05.003
Kuburich, N. A., Sabapathy, T., Demestichas, B. R., Maddela, J. J., den Hollandera, P. & Mani, S.A. (2023). Proactive and reactive roles of TGF-β in cancer. Semin. Cancer Biol., 95, 120–139. https://doi.org/10.1016/j.semcancer.2023.08.002
Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, A. B., Sporn, M. B., Ward, J. M. & Karlsson, S. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proceedings of the National Academy of Sciences, 90(2), 770–774. https://doi.org/10.1073/PNAS.90.2.770
Kumar, S., Guleria, R., Mohan, A., Singh, V., Ali, A., Bharti, A. C. & Das, B. C. (2010). Utility of plasma tumour necrosis factor-α and transforming growth factor-β1 as predictors of survival and treatment outcome in advanced non-small cell lung carcinoma. Biomarkers, 15(5), 446–453. https://doi.org/10.3109/1354750X.2010.485699
Lainé, A., Labiad, O., Hernandez-Vargas, H., This, S., Sanlaville, A., Léon, S., Dalle, S., Sheppard, D., Travis, M. A., Paidassi, H. & Marie, J. C. (2021). Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nature Communications, 12(1), 1–14. https://doi.org/10.1038/s41467-021-26352-2
Lara-Salas, M. A., García-Díaz, P. O., Mendoza-Lara, D. F., Sosa-Garrocho, M., Pérez-Calixto, M. P., Mota-López, A. C., Soldevila, G., Robles-Flores, M. & Macías-Silva, M. (2023). La citocina TGF-β en el cáncer colorrectal: Mecanismos de acción y de secreción. TIP Revista Especializada en Ciencias Químico-Biológicas, 26, 1–18. https://doi.org/10.22201/fesz.23958723e.2023.575
Li, A., Chang, Y., Song, N. J., Wu, X., Chung, D., Riesenberg, B. P., Velegraki, M., Giuliani, G. D., Das, K., Okimoto, T., Kwon, H., Chakravarthy, K. B., Bolyard, C., Wang, Y., He, K., Gatti-Mays, M., Das, J., Yang, Y., Gewirth, D. T., Ma, Q., Carbone, D. & Li, Z. (2022). Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8+ T cell antitumor immunity. Journal for Immunotherapy of Cancer, 10(9), e005433. https://doi.org/10.1136/JITC-2022-005433
Li, W., Zhang, X., Wang, J., Li, M., Cao, C., Tan, J., Ma, D., Gao, Q., Li, W., Zhang, X., Wang, J., Li, M., Cao, C., Tan, J., Ma, D. & Gao, Q. (2017). TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget, 8(56), 96035–96047. https://doi.org/10.18632/ONCOTARGET.21635
Lima, L. G., Chammas, R., Monteiro, R. Q., Moreira, M. E. C. & Barcinski, M. A. (2009). Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Letters, 283(2), 168–175. https://doi.org/10.1016/J.CANLET.2009.03.041
Liu, S., Ren, J. & ten Dijke, P. (2021). Targeting TGFβ signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 6(1), 1–20. https://doi.org/10.1038/s41392-020-00436-9
López-Muñoz, H., Escobar-Sánchez, M. L., López-Marure, R., Lascurain-Ledesma, R., Zenteno, E., Hernández-Vazquez, J. M. V., Weiss-Steider, B. & Sánchez-Sánchez, L. (2013). Cervical cancer cells induce apoptosis in TCD4+ lymphocytes through the secretion of TGF-β. Archives of Gynecology and Obstetrics, 287(4), 755–763. https://doi.org/10.1007/S00404-012-2621-Y
Ma, G. F., Miao, Q., Zeng, X. Q., Luo, T. C., Ma, L. L., Liu, Y. M., Lian, J. J., Gao, H. & Chen, S. Y. (2013). Transforming Growth Factor-β1 and -β2 in Gastric Precancer and Cancer and Roles in Tumor-Cell Interactions with Peripheral Blood Mononuclear Cells in vitro. PLoS ONE, 8(1), 54249. https://doi.org/10.1371/journal.pone.0054249
Macías-Silva, M., Abdollah, S., Hoodless, P. A., Pirone, R., Attisano, L. & Wrana, J. L. (1996). MADR2 Is a Substrate of the TGFβ Receptor and its Phosphorylation is Required for Nuclear Accumulation and Signaling. Cell, 87(7), 1215–1224. https://doi.org/10.1016/S0092-8674(00)81817-6
Macías-Silva, M., Hoodless, P. A., Tang, S. J., Buchwald, M. & Wrana, J. L. (1998). Specific Activation of Smad1 Signaling Pathways by the BMP7 Type I Receptor, ALK2. Journal of Biological Chemistry, 273(40), 25628–25636. https://doi.org/10.1074/JBC.273.40.25628
Mallikarjuna, P., Zhou, Y. & Landström, M. (2022). The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules, 12(5), 635. https://doi.org/10.3390/BIOM12050635
Martin, C. J., Datta, A., Littlefield, C., Kalra, A., Chapron, C., Wawersik, S., Dagbay, K. B., Brueckner, C. T., Nikiforov, A., Danehy, F. T., Streich, F. C., Boston, C., Simpson, A., Jackson, J. W., Lin, S., Danek, N., Faucette, R. R., Raman, P., Capili, A. D., Buckler, A., Carven, G. J. & Schürpf, T. (2020). Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Science Translational Medicine, 12(536), 8456. https://doi.org/10.1126/SCITRANSLMED.AAY8456
Martínez, V. G., O’Neill, S., Salimu, J., Breslin, S., Clayton, A., Crown, J. & O’Driscoll, L. (2017). Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. OncoImmunology, 6(12), e1362530 (10 pages). https://doi.org/10.1080/2162402X.2017.1362530
Massagué, J. (2008). TGFβ in Cancer. Cell, 134(2), 215–230. https://doi.org/10.1016/J.CELL.2008.07.001
Massagué, J. & Sheppard, D. (2021). TGFβ signaling in health and disease. Cell, 186, 4007–4037. https://doi.org/10.1016/j.cell.2023.07.036
Metelli, A., Wu, B. X., Riesenberg, B., Guglietta, S., Huck, J. D., Mills, C., Li, A., Rachidi, S., Krieg, C., Rubinstein, M. P., Gewirth, D. T., Sun, S., Lilly, M. B., Wahlquist, A. H., Carbone, D. P., Yang, Y., Liu, B. & Li, Z. (2020). Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Science Translational Medicine, 12(525), eaay4860 (13 pages). https://doi.org/10.1126/SCITRANSLMED.AAY4860
Miyazono, K., Olofsson, A., Colosetti, P. & Heldin, C. H. (1991). A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. The EMBO Journal, 10(5), 1091–1101. https://doi.org/10.1002/j.1460-2075.1991.tb08049.x
Moses, H. L., Roberts, A. B. & Derynck, R. (2016). The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harbor Perspectives in Biology, 8(7), a021865. https://doi.org/10.1101/CSHPERSPECT.A021865
Murphy-Ullrich, J. E. & Suto, M. J. (2018). Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biology : Journal of the International Society for Matrix Biology, 68, 28-43. https://doi.org/10.1016/J.MATBIO.2017.12.009
Nakayama, F., Miyoshi, M., Kimoto, A., Kawano, A., Miyashita, K., Kamoshida, S., Shimizu, K. & Hori, Y. (2022). Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor β1. Medical Molecular Morphology, 55(3), 227–235. https://doi.org/10.1007/S00795-022-00321-0
Nüchel, J., Ghatak, S., Zuk, A. V., Illerhaus, A., Mörgelin, M., Schönborn, K., Blumbach, K., Wickström, S. A., Krieg, T., Sengle, G., Plomann, M. & Eckes, B. (2018). TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy, 14(3), 465–486. https://doi.org/10.1080/15548627.2017.1422850
Patel, A. (2020). Benign vs. malignant tumors. JAMA Oncol., 6(9), 1488. https://doi.org/10.1001/jamaoncol.2020.2592
Peinado, H., Zhang, H., Matei, I. R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R. N., Bromberg, J. F., Kang, Y., Bissell, M. J., Cox, T. R., Giaccia, A. J., Erler, J. T., Hiratsuka, S., Ghajar, C. M. & Lyden, D. (2017). Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 17(5), 302–317. https://doi.org/10.1038/nrc.2017.6
Pérez-Calixto, M. P., Anaya-Rubio, I., Mota-Lopez, C. & Macias-Silva, M. (2022). Melanoma: Mecanismos de acción y de secreción del factor de crecimiento transformante-beta (TGF-β). Revista de Educación Bioquímica, 41(1), 18–27. https://www.medigraphic.com/pdfs/revedubio/reb-2022/reb221c.pdf
Proetzel, G., Pawlowski, S. A., Wiles, M. V., Yin, M., Boivin, G. P., Howles, P. N., Ding, J., Ferguson, M. W. J. & Doetschman, T. (1995). Transforming growth factor–β3 is required for secondary palate fusion. Nature Genetics, 11(4), 409–414. https://doi.org/10.1038/ng1295-409
Qin, Y., Garrison, B. S., Ma, W., Wang, R., Jiang, A., Li, J., Mistry, M., Bronson, R. T., Santoro, D., Franco, C., Robinton, D. A., Stevens, B., Rossi, D. J., Lu, C. & Springer, T. A. (2018). A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System. Cell, 174(1), 156-171.e16. https://doi.org/10.1016/J.CELL.2018.05.027
Qu, Z., Feng, J., Pan, H., Jiang, Y., Duan, Y. & Fa, Z. (2019). Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. OncoTargets and Therapy, 12, 6897–6905. https://doi.org/10.2147/OTT.S209413
Raimondo, S., Saieva, L., Corrado, C., Fontana, S., Flugy, A., Rizzo, A., De Leo, G. & Alessandro, R. (2015). Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism. Cell Communication and Signaling, 13(1), 1–12. https://doi.org/10.1186/S12964-015-0086-X/FIGURES/8
Ramteke, A., Ting, H., Agarwal, C., Mateen, S., Somasagara, R., Hussain, A., Graner, M., Frederick, B., Agarwal, R. & Deep, G. (2015). Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Molecular Carcinogenesis, 54(7), 554–565. https://doi.org/10.1002/MC.22124
Ringuette Goulet, C. R., Bernard, G., Tremblay, S., Chabaud, S., Bolduc, S. & Pouliot, F. (2018). Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFb signaling. Molecular Cancer Research, 16(7), 1196–1204. https://doi.org/10.1158/1541-7786.MCR-17-0784
Robertson, I. B. & Rifkin, D. B. (2016). Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harbor Perspectives in Biology, 8(6), a021907. https://doi.org/10.1101/CSHPERSPECT.A021907
Robles-Flores, M., López-Ríos, D. & Macías-Silva, M. (2017). Capítulo 3: Las vías de señalización de TGF-β y Wnt: Reguladores maestros de la autorenovación y la diferenciación de las células troncales. Publicado en el libro: Células Troncales: Biología y Aplicaciones en Biomedicina. Editado por M. A. Chávez-González, J. Chimal-Monroy, E. Flores-Figueroa y Mónica Lamas. Publicación para el Grupo Mexicano de Células Troncales. Publicado por la Universidad Nacional Autónoma de México (UNAM). ISBN: 978-607-8341-46-7
Rodrigues, G., Hoshino, A., Kenific, C. M., Matei, I. R., Steiner, L., Freitas, D., Kim, H. S., Oxley, P. R., Scandariato, I., Casanova-Salas, I., Dai, J., Badwe, C. R., Gril, B., Tešić Mark, M., Dill, B. D., Molina, H., Zhang, H., Benito-Martin, A., Bojmar, L., Ararso, Y., Offer, K., LaPlant, Q., Buehring, W., Wang, H., Jiang, X., Lu, T. M., Liu, Y., Sabari, J. K., Shin, S. J., Narula, N., Ginter, P. S., Rajasekhar, V. K., Healey, J. H., Meylan, E., Costa-Silva, B., Wang, S. E., Rafii, S., Altorki, N. K., Rudin, C. M., Jones, D. R., Steeg, P. S., Peinado, H., Ghajar, C. M., Bromberg, J., de Sousa, M., Pisapia, D. & Lyden, D. (2019). Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology, 21(11), 1403–1412. https://doi.org/10.1038/s41556-019-0404-4
Rodrigues-Junior, D. M., Tsirigoti, C., Lim, S. K., Heldin, C. H. & Moustakas, A. (2022). Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Frontiers in Cell and Developmental Biology, 10, 849938. https://doi.org/10.3389/FCELL.2022.849938/BIBTEX
Rong, L., Li, R., Li, S. & Luo, R. (2016). Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncology Letters, 11(1), 500. https://doi.org/10.3892/OL.2015.3841
Sanjabi, S., Oh, S. A. & Li, M. O. (2017). Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor Perspectives in Biology, 9(6), a022236. https://doi.org/10.1101/CSHPERSPECT.A022236
Schubert, A. & Boutros, M. (2021). Extracellular vesicles and oncogenic signaling. Molecular Oncology, 15(1), 3–26. https://doi.org/10.1002/1878-0261.12855
Segura-Villalobos, D., Ramírez-Moreno, I. G., Martínez-Aguilar, M., Ibarra-Sánchez, A., Muñoz-Bello, J. O., Anaya-Rubio, I., Padilla, A., Macías-Silva, M., Lizano, M. & González-Espinosa, C. (2022). Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells, 11(3), 349. https://doi.org/10.3390/CELLS11030349
Shelke, G. V., Yin, Y., Jang, S. C., Lässer, C., Wennmalm, S., Hoffmann, H. J., Li, L., Gho, Y. S., Nilsson, J. A. & Lötvall, J. (2019). Endosomal signalling via exosome surface TGFβ-1. Journal of Extracellular Vesicles, 8(1), 1650458. https://doi.org/10.1080/20013078.2019.1650458
Shi, W., Sun, C., He, B., Xiong, W., Shi, X., Yao, D. & Cao, X. (2004). GADD34–PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor. Journal of Cell Biology, 164(2), 291–300. https://doi.org/10.1083/JCB.200307151
Shipitsin, M., Campbell, L. L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., Halushka, M. K., Sukumar, S., Parker, L. M., Anderson, K. S., Harris, L. N., Garber, J. E., Richardson, A. L., Schnitt, S. J., Nikolsky, Y., Gelman, R. S. & Polyak, K. (2007). Molecular Definition of Breast Tumor Heterogeneity. Cancer Cell, 11(3), 259–273. https://doi.org/10.1016/J.CCR.2007.01.013
Signore, M., Alfonsi, R., Federici, G., Nanni, S., Addario, A., Bertuccini, L., Aiello, A., Di Pace, A. L., Sperduti, I., Muto, G., Giacobbe, A., Collura, D., Brunetto, L., Simone, G., Costantini, M., Crinò, L., Rossi, S., Tabolacci, C., Diociaiuti, M., Merlino, T., Gallucci, M., Sentinelli, S., Papalia, R., De Maria, R. & Bonci, D. (2021). Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death & Disease, 12(7), 636. https://doi.org/10.1038/S41419-021-03909-Z
Sirard, C., De La Pompa, J. L., Elia, A., Itie, A., Mirtsos, C., Cheung, A., Hahn, S., Wakeham, A., Schwartz, L., Kern, S. E., Rossant, J. & Mak, T. W. (1998). The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes & Development, 12(1), 107. https://doi.org/10.1101/GAD.12.1.107
Stockis, J., Colau, D., Coulie, P. G. & Lucas, S. (2009). Membrane protein GARP is a receptor for latent TGF-β on the surface of activated human Treg. European Journal of Immunology, 39(12), 3315–3322. https://doi.org/10.1002/EJI.200939684
Sweetwyne, M. T. & Murphy-Ullrich, J. E. (2012). Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biology, 31(3), 178–186. https://doi.org/10.1016/J.MATBIO.2012.01.006
Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. & Whiteside, T. L. (2010). Tumor-Derived Microvesicles Induce, Expand and Up-Regulate Biological Activities of Human Regulatory T Cells (Treg). PLOS ONE, 5(7), e11469. https://doi.org/10.1371/JOURNAL.PONE.0011469
Szczepanski, M. J., Szajnik, M., Welsh, A., Whiteside, T. L. & Boyiadzis, M. (2011). Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica, 96(9), 1302. https://doi.org/10.3324/HAEMATOL.2010.039743
Takahashi, K., Yan, I. K., Kogure, T., Haga, H. & Patel, T. (2014). Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio, 4, 458. https://doi.org/10.1016/J.FOB.2014.04.007
Takasaka, N., Seed, R. I., Cormier, A., Bondesson, A. J., Lou, J., Elattma, A., Ito, S., Yanagisawa, H., Hashimoto, M., Ma, R., Levine, M. D., Publicover, J., Potts, R., Jespersen, J. M., Campbell, M. G., Conrad, F., Marks, J. D., Cheng, Y., Baron, J. L. & Nishimura, S. L. (2018). Integrin αvβ8–expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight, 3(20), e122591. https://doi.org/10.1172/JCI.INSIGHT.122591
Tan, C., Sun, W., Xu, Z., Zhu, S., Hu, W., Wang, X., Zhang, Y., Zhang, G., Wang, Z., Xu, Y. & Tang, J. (2021a). Small extracellular vesicles deliver TGF-β1 and promote adriamycin resistance in breast cancer cells. Molecular Oncology, 15(5), 1528–1542. https://doi.org/10.1002/1878-0261.12908
Tan, Y., Luo, X., Lv, W., Hu, W., Zhao, C., Xiong, M., Yi, Y., Wang, D., Wang, Y., Wang, H., Wu, Y. & Zhang, Q. (2021b). Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death & Disease, 12(6), 1–18. https://doi.org/10.1038/s41419-021-03825-2
Tecalco-Cruz, A. C., Ríos-López, D. G., Vázquez-Victorio, G., Rosales-Alvarez, R. E. & Macías-Silva, M. (2018). Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduction and Targeted Therapy, 3(1), 1–15. https://doi.org/10.1038/s41392-018-0015-8
ten Dijke, P., Hansen, P., Iwata, K. K., Pieler, C. & Foulkes, J. G. (1988). Identification of another member of the transforming growth factor type beta gene family. Proceedings of the National Academy of Sciences, 85(13), 4715–4719. https://doi.org/10.1073/PNAS.85.13.4715
Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Zavec, A. B., Benmoussa, A., Berardi, A. C., Bergese, P., Bielska, E., Blenkiron, C., Bobis-Wozowicz, S., Boilard, E., Boireau, W., Bongiovanni, A., Borràs, F. E., Bosch, S., Boulanger, C. M., Breakefield, X., Breglio, A. M., Brennan, M. Á., Brigstock, D. R., Brisson, A., Broekman, M. L. D., Bromberg, J. F., Bryl-Górecka, P., Buch, S., Buck, A. H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E. I., Byrd, J. B., Camussi, G., Carter, D. R. F., Caruso, S., Chamley, L. W., Chang, Y. T., Chaudhuri, A. D., Chen, C., Chen, S., Cheng, L,, Chin, A. R., Clayton, A., Clerici, S. P., Cocks, A., Cocucci, E., Coffey, R. J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F. A. W., Coyle, B., Crescitelli, R., Criado, M. F., D’Souza-Schorey, C., Das, S., de Candia, P., De Santana Junior, E. F., De Wever, O., Del Portillo, H. A., Demaret, T., Deville, S., Devitt, A., Dhondt, B., Di Vizio, D., Dieterich, L. C., Dolo, V., Dominguez-Rubio, A. P., Dominici, M., Dourado, M. R., Driedonks, T. A. P., Duarte, F. V., Duncan, H. M., Eichenberger, R. M., Ekström, K., Andaloussi, S. E. L., Elie-Caille, C., Erdbrügger, U., Falcón-Pérez, J. M., Fatima, F., Fish, J. E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielsson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Gho, Y. S., Giebel, B., Gilbert, C., Gimona, M., Giusti, I., Goberdhan, D. C. I., Görgens, A., Gorski, S. M., Greening, D. W., Gross, J. C., Gualerzi, A., Gupta, G. N., Gustafson, D., Handberg, A., Haraszti, R. A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A. F., Hochberg, F. H., Hoffmann, K. F., Holder, B., Holthofer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A. G. E., Ikezu, T., Inal, J. M., Isin, M., Ivanova, A., Jackson, H. K., Jacobsen, S., Jay, S. M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S. M, Jones, J. C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., Kano, S. I., Kaur, S., Kawamura, Y., Keller, E. T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K. P., Kislinger, T., Klingeborn, M., Klinke II, D. J., Kornek, M., Kosanović, M. M., Kovács, Á. F., Krämer-Albers, E. M., Krasemann, S., Krause, M., Kurochkin, I. V., Kusuma, G. D., Kuypers, S., Laitinen, S., Langevin, S. M., Languino, L. R., Lannigan, J., Lässer, C., Laurent, L. C., Lavieu, G., Lázaro-Ibáñez, E., Le Lay, S., Lee, M. S., Lee, Y. X. F., Lemos, D. S., Lenassi, M., Leszczynska, A., Li, I. T. S., Liao, K., Libregts, S. F., Ligeti, E., Lim, R., Lim, S. K., Linē, A., Linnemannstöns, K., Llorente, A., Lombard, C. A., Lorenowicz, M. J., Lörincz, Á. M., Lötvall, J., Lovett, J., Lowry, M. C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T. R., Maas, S. L. N., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E. S., Martin-Jaular, L., Martinez, M. C., Martins, V. R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L. K., McVey, M. J., Meckes, D. G. Jr, Meehan, K. L., Mertens, I., Minciacchi, V. R., Möller, A., Møller Jørgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D. C., Myburgh, K. H, Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwland, R., Nimrichter, L., Nolan, J. P., Nolte-’t Hoen, E. N., Hooten, N. N., O’Driscoll, L., O’Grady, T., O’Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L. A., Osteikoetxea, X., Østergaard, O., Ostrowski, M., Park, J., Pegtel, D. M., Peinado, H., Perut, F., Pfaffl, M. W., Phinney, D. G., Pieters, B. C. H., Pink, R. C., Pisetsky, D. S., Pogge von Strandmann, E., Polakovicova, I., Poon, I. K. H., Powell, B. H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R. L., Raimondo, S., Rak, J., Ramirez, M. I., Raposo, G., Rayyan, M. S., Regev-Rudzki, N., Ricklefs, F. L., Robbins P. D., Roberts, D. D., Rodrigues, S. C., Rohde, E., Rome, S., Rouschop, K. M. A., Rughetti, A., Russell, A. E., Saá, P., Sahoo, S., Salas-Huenuleo, E., Sánchez, C., Saugstad, J. A., Saul, M. J., Schiffelers, R. M., Schneider, R., Schøyen, T. H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Shekari, F., Shelke, G. V., Shetty, A. K., Shiba, K., Siljander, P. R. M., Silva, A. M., Skowronek, A., Snyder II, O. L., Soares, R. P., Sódar, B. W., Soekmadji, C., Sotillo, J., Stahl, P. D., Stoorvogel, W., Stott, S. L., Strasser, E. F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M., Toh, W. S., Tomasini, R.,, Torrecilhas, A. C., Tosar, J. P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B. W. M., van der Grein, S. G., Van Deun, J., van Herwijnen, M. J. C., Van Keuren-Jensen, K., van Niel, G., van Royen, M. E., van Wijnen, A. J., Vasconcelos, M. H., Vechetti Jr, I. J., Veit, T. D., Vella, L. J., Velot, É., Verweij, F. J., Vestad, B., Viñas, J. L., Visnovitz, T., Vukman, K. V., Wahlgren, J., Watson, D. C., Wauben, M. H. M., Weaver, A., Webber, J. P., Weber, V., Wehman, A. M., Weiss, D. J., Welsh, J. A., Wendt, S., Wheelock, A. M., Wiener, Z,, Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yáñez-Mó, M., Yin, H., Yuana, Y., Zappulli, V., Zarubova, J., Žėkas, V., Zhang, J. Y., Zhao, Z., Zheng, L., Zheutlin, A. R., Zickler, A. M., Zimmermann, P., Zivkovic, A. M., Zocco, D. & Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750. https://doi.org/10.1080/20013078.2018.1535750
Toledo-Padilla, D., Coquis-Bucio, D. A., Sosa-Garrocho, M. & Macías-Silva, M. (2023). Síntesis, secreción y activación de la citocina TGF-β en la salud y la enfermedad. Revista de Educación Bioquímica, 42(3), 141–151. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=113182
Tran, D. Q., Andersson, J., Wang, R., Ramsey, H., Unutmaz, D. & Shevach, E. M. (2009). GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13445–13450. https://doi.org/10.1073/PNAS.0901944106
Valet, M. & Narbonne, P. (2022). Formation of benign tumors by stem cell deregulation. PLoS Genet., 18(10), e1010434. https://doi.org/10.1371/ journal.pgen.1010434
Van Niel, G., D’Angelo, G. & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19(4), 213–228. https://doi.org/10.1038/nrm.2017.125
Vázquez-Victorio, G., Rosales-Alvarez, R. E., Ríos-López, D. G., Tecalco-Cruz, A. C. & Macías-Silva, M. (2017). Chapter 4: TGF-β signaling pathway regulation by transcriptional cofactors Ski and SnoN in health and disease. In Advances in Health and Disease. Vol I: 258 pp. Editor: Lowell T. Duncan. NOVA Science Publishers Inc. USA. ISBN: 978-1-53612-070-7
Vázquez-Victorio, G., Rodríguez-Hernández, A., Cano-Jorge, M., Monroy-Romero, A. X., Macías-Silva, M. & Hautefeuille, M. (2021). Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Methods in Molecular Biology, 2174, 277–297. https://doi.org/10.1007/978-1-0716-0759-6_18
Wang, H. & Kochevar, I. E. (2005). Involvement of UVB-induced reactive oxygen species in TGF-β biosynthesis and activation in keratinocytes. Free Radical Biology and Medicine, 38(7), 890–897. https://doi.org/10.1016/J.FREERADBIOMED.2004.12.005
Wang, R., Zhu, J., Dong, X., Shi, M., Lu, C. & Springer, T. A. (2012). GARP regulates the bioavailability and activation of TGFβ. Molecular Biology of the Cell, 23(6), 1129–1139. https://doi.org/10.1091/MBC.E11-12-1018
Wang, Y., Yi, J., Chen, X., Zhang, Y., Xu, M. & Yang, Z. (2015). The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncology Letters, 11(2), 1527. https://doi.org/10.3892/OL.2015.4044
Webber, J. P., Spary, L. K., Sanders, A. J., Chowdhury, R., Jiang, W. G., Steadman, R., Wymant, J., Jones, A. T., Kynaston, H., Mason, M. D., Tabi, Z. & Clayton, A. (2015). Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene, 34(3), 290–302. https://doi.org/10.1038/onc.2013.560
Webber, J., Steadman, R., Mason, M. D., Tabi, Z. & Clayton, A. (2010). Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Research, 70(23), 9621–9630. https://doi.org/10.1158/0008-5472.CAN-10-1722
Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. (1994). Mechanism of activation of the TGF-beta receptor. Nature, 370(6488), 341–347. https://doi.org/10.1038/370341A0
Xie, F., Zhou, X., Su, P., Li, H., Tu, Y., Du, J., Pan, C., Wei, X., Zheng, M., Jin, K., Miao, L., Wang, C., Meng, X., van Dam, H., ten Dijke, P., Zhang, L. & Zhou, F. (2022). Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nature Communications, 13, 4461 (18 pages). https://doi.org/10.1038/S41467-022-31250-2
Xie, Y., Bai, O., Yuan, J., Chibbar, R., Slattery, K., Wei, Y., Deng, Y. & Xiang, J. (2009). Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Research, 69(19), 7756–7766. https://doi.org/10.1158/0008-5472.CAN-09-0496
Yamada, N., Kuranaga, Y., Kumazaki, M., Shinohara, H., Taniguchi, K. & Akao, Y. (2016). Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-β1-mediated suppression. Oncotarget, 7(19), 27033–27043. https://doi.org/10.18632/ONCOTARGET.7041
Yamada, N., Tsujimura, N., Kumazaki, M., Shinohara, H., Taniguchi, K., Nakagawa, Y., Naoe, T. & Akao, Y. (2014). Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochimica et Biophysica Acta, 1839(11), 1256–1272. https://doi.org/10.1016/J.BBAGRM.2014.09.002
Yang, X., Letterio, J. J., Lechleider, R. J., Chen, L., Hayman, R., Gu, H., Roberts, A. B. & Deng, C. (1999). Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. The EMBO Journal, 18(5), 1280–1291. https://doi.org/10.1093/EMBOJ/18.5.1280
Yen, E. Y., Miaw, S. C., Yu, J. S. & Lai, I. R. (2017). Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. American Journal of Cancer Research, 7(11), 2199. https://pmc.ncbi.nlm.nih.gov/articles/PMC5714749/
Yu, Y., Xiao, C. H., Tan, L. D., Wang, Q. S., Li, X. Q. & Feng, Y. M. (2014). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. British Journal of Cancer, 110(3), 724–732. https://doi.org/10.1038/BJC.2013.768
Zhang, D., Jin, W., Wu, R., Li, J., Park, S. A., Tu, E., Zanvit, P., Xu, J., Liu, O., Cain, A. & Chen, W. J. (2019). High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 51(4), 671-681.e5. https://doi.org/10.1016/J.IMMUNI.2019.08.001
Zhao, J., Schlößer, H. A., Wang, Z., Qin, J., Li, J., Popp, F., Popp, M. C., Alakus, H., Chon, S. H., Hansen, H. P., Neiss, W. F., Jauch, K. W., Bruns, C. J. & Zhao, Y. (2019). Tumor-Derived Extracellular Vesicles Inhibit Natural Killer Cell Function in Pancreatic Cancer. Cancers, 11(6), 874. https://doi.org/10.3390/CANCERS11060874
Zhu, Y., Richardson, J. A., Parada, L. F. & Graft, J. M. (1998). Smad3 mutant mice develop metastatic colorectal cancer. Cell, 94(6), 703–714. https://doi.org/10.1016/S0092-8674(00)81730-4
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.