Anaya-Esparza, Méndez-Robles, Pérez-Larios, Yahia, and Montalvo-González: Nutrimental composition and physicochemical parameters of thermosonicated soursop nectar



Introduction

The consumption of fruit and vegetables beverages is highly recommended mainly for its nutritional content and healthy benefits (Carrillo et al., 2014). The fruit beverages as juices or nectars are subject to rapid deterioration if they are not properly processed (Nwachukwu & Ezeigdo, 2013; Giner et al., 2013). The thermal pasteurization is the most common heat treatment applied for fruit beverages preservation to date. It assures good shelf-life and stability of these products; however, this process may affect the beverages quality in terms of nutritional and physicochemical parameters (Santhirasegaram et al., 2013; Cruz-Cansino et al., 2016). Thermosonication (TS) is an emerging technology that is described as a complete or partial alternative to thermal processing for preservation of fruit juices or nectars (Anaya-Esparza et al., 2017c). TS is a technology that combines cavitation (ultrasound) with heat producing an additive effect that greatly increases bacterial and enzymatic inactivation compared to thermal pasteurization without changes in physicochemical and sensory attributes in fruit-based beverages. Several studies have been done on the application of TS on fruit juices focusing on meeting FDA-HACCP (FDA, 2004) stipulations to reduce at least five log cycles of spoilage and pathogenic microorganisms (Ferrairo et al., 2015; Garud et al., 2017; Sánchez-Rubio et al., 2016). The effect of TS on enzymatic inactivation has also been studied (Aadil et al., 2015b; Cruz-Cansinoet al, 2015; Jabbar et al., 2015), and has been found to increase or retain of bioactive compounds (Martínez-Flores et al., 2015; Shaheer et al., 2014; Proestos & Komaitis, 2006), and changes on physicochemical properties of some fruit juices (Dinçer & Topuz, 2015; Ertugay & Baslar, 2014; Nafar et al., 2013). Recently, we have reported that TS treatment (1.4 W/mL of acoustic energy density) of soursop nectar at 54°C for 10 min resulted in 91 to 99% decreases in polyphenol oxidase (PPO) activity (Anaya-Esparza et al., 2017b) and is effective on the inactivation of Escherichia coli and Staphylococcus aureus(5 log CFU/mL), without affecting quality parameters such as pH, titratable acidity, total soluble solids, color, ascorbic acid content and sensory attributes at the time of TS application and during cold storage at 4°C after 30 days (Anaya-Esparza et al., 2017a).

Although some research has been reported on TS processing of fruit juices, there have been no reports on the effect of TS on nutrimental components (proteins, fats, carbohydrates, dietary fiber, moisture and ash contents) in soursop beverages. The objective this work was to evaluate the effect of TS in changes of some nutrients and physicochemical parameters in soursop nectar.

Materials and methods

Samples and treatments

Mature soursop fruits were obtained from an orchard located in the village El Tonino, near Tepic, Nayarit, Mexico. For making soursop nectar, soursop pulp was diluted with purified water (350 g/L), and the mixture was homogenized, and then adjusted with sucrose (50 g/L), according to the requirements of the “Codex Alimentarius for Fruit Juices and Nectars” (CODEX STAN 247-2005) Nectar samples were treated with ultrasound (Hielsher UP400S, Teltow, Germany) at 270 W, with constant frequency of 24 ± 1 kHz. A shaking water bath (Thermo Scientific 2870, Ohio, USA) was used to maintain a constant temperature. Experimental TS conditions (Table I) were 1.3 W/mL of acoustic energy density (AED) at 51 °C during 8 min and 1.4 W/mL of AED at 54°C during 10 min. This combination of AED, time and temperature were established according to results from a previous study (Anaya-Esparza et al., 2017a b). For each treatment, 200 mL of soursop nectar were placed in a 250 mL beaker. Two control soursop nectars were considered; one fresh unpasteurized nectar (without treatment, UPN) and a thermally pasteurized at 65 ± 1 ºC for 30 min (TPN). This particular temperature and time were chosen to simulate the conventional batch pasteurization process as mentioned by Bermúdez-Aguirre et al. (2011). UPN nectar was analized inmediatly; while TPN and thermosonicated (TSN) nectars were stored at 4 ºC during 15 and 30 days, respectively, and analysed at the end of the storage period.

Table I

Experimental conditions and values of pH, titratable acidity (TA) and total soluble solids (TSS) of unpasteurized (UPN), traditionally pasteurized (TPN) and thermosonicated (TSN) soursop nectars stored at 4 ºC during 30 days.

Treatments Time (min) AED (W/mL) Temperature (°C) pH TA (g MAE/L) TSS (°Brix)
UPN - - - 3.70 ± 0.01ª 3.5 ± 0.03ª 14.48 ± 0.03ª
TPN 30 - 65 3.71 ± 0.01ª 3.8 ± 0.02ª 15.01 ± 0.09b
TSN 1 8 1.3 51 3.71 ± 0.01ª 3.6 ± 0.01ª 14.46 ± 0.03ª
TSN 2 10 1.4 54 3.70 ± 0.01ª 3.5 ± 0.01ª 14.43 ± 0.03ª

[i] Values in final temperature are the average of triplicate determination from three different experiments (n = 9). AED = Acoustic energy density; MAE = Malic acid equivalent.

Nutrimental composition

Moisture (Method 925.09), protein (Method 920.152), and ash (Method 940.26) contents were determined following the official AOAC methods (AOAC, 2005). Soluble sugars were quantified by the phenol-sulphuric method (Dubois et al., 1956). Total dietary fiber (TDF) is the sum of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF). Dietary fiber content was analysed by the AOAC enzymatic-gravimetric method (Method 991.42) modified by Mañas & Saura-Calixto (1995). Samples were treated with heat stable α-amylase, protease, and amyloglucosidase to remove protein and starch. The remaining residues were separated by centrifugation (15 min, 25 °C, 3,000 g) to separate soluble and insoluble fractions. The supernatants were dialyzed with water to avoid losses of SDF. The dialysates (containing SDF) and residues (non-starch polysaccharides, NSP) obtained from centrifugation were submitted to acid hydrolysis with sulphuric acid (12 M). To calculate SDF and NSP the amount of glucose obtained by hydrolysis was measured using the method of Englyst & Cummings (1988).

Fat content was measured according to the method of Bligh & Dyer (1959). For lipid extraction, the sample (5 mL) was homogenized with a mixture of distilled water (10 mL), methanol (20 mL), chloroform (10 mL), and then centrifuged (Hermle Z306, Wehingen, Germany) at 4,000 g for 10 min. Percentage of lipid content (using 12.5 mL of lipid extract) was quantified gravimetrically and calculated using equation (1).

(1)
Total lipid=Dry weight of lipid in aliquot* Volume of chloroform layer Volume of lipid extract* volume of sample *100

All results of proximate analyses were expressed as g/L of soursop nectar.

Turbidity, viscosity and electrical conductivity

The turbidity of soursop nectar was measured with a turbidimeter (HACH 2,100N Turbidimeter, Loveland, Colorado, USA) using sample cells (95 mm high * 25 mm diameter) at room temperature according to the manufacturer instructions. Results are expressed as Nephelometric Turbidity Unit (NTU). Viscosity was measured using a Digital Viscometer (Brookfield DV2T HB, Middleboro, USA) with a precision cylindrical (spindle HA #02) using 200 mL of sample at 25 °C, and viscosity was determined at 30 rpm as mentioned by Yusof & Ibrahim (1994), and results expressed as Centipoise (cp). Electrical conductivity (EC) was determined using a portable conductivity meter (Hanna instruments HI 8733, Bedford, United Kingdom) and results were expressed as mS/cm.

Other analysis

Total soluble solids (TSS), titratable acidity (TA) and pH were measured as reference before and after each treatment as per the methods reported by Anaya-Esparza et al. (2017b).

Statistical analyses

All values were obtained from three independent experiments and each sample was performed in triplicate (n = 9). Results were expressed as means ± standard deviation (SD). The one-way analysis of variance (ANOVA) test was used to analyse the data, and differences among means were compared by a Tukey test with a level of significance of p < 0.05, using the Statistica software (v.10 Statsoft®, Tulsa, USA).

Results and discussion

According to the “Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization” issued by the National Advisory Committee on Microbiological Criteria for Foods (NACMCF, 2006), the purpose of the emerging technologies such as thermosonication is to retain or enhance the original properties of fruit beverages after preservation treatment. Total soluble solids (TSS), titratable acidity (TA) and pH for fresh (UPN), pasteurized (TPN) and thermosonicated soursop nectar are given in Table I. The values in control (fresh and pasteurized) nectars were similar to those reported for fresh soursop nectar (Falguera et al., 2012) and pasteurized soursop nectar (Peters et al., 2000). Thermosonication processing (TS1 and TS2) did not promote significant changes ( p < 0.05) in TSS, TA and pH compared with fresh control (Anaya-Esparza et al., 2017b). These results were in accordance to those reported by Tiwari et al. (2008). They reported no significant changes in TSS, TA and pH in orange juice treated by ultrasound independently of AED or treatment time; probably because the initial preparation of nectar (homogenization of pulp) to liberate simple sugars and organic acids in all treatments before of TS as was mentioned by Zou & Jiang (2016) after application of ultrasound treatment in carrot juice.

Nutritional composition of soursop nectar

Nutritional analyses were performed in thermosonicated nectar (TSN) to evaluate the possible change in nectar composition (protein, fat, carbohydrates, dietary fiber, moisture and ash) after treatment, because of studies about the effect of thermosonication on nutrimental content in fruit juice and nectars are scarce. Results of nutritional analyses in soursop nectar are shown in Table II.

Table II

Nutritional composition of unpasteurized (UPN) traditionally pasteurized (TPN) and thermosonicated (TSN) soursop nectars stored at 4 ºC during 30 days.

Treatment Protein (g/L) Fat (g/L) Soluble sugars (g/L) Moisture (g/L) Ash (g/L)
UPN 2.9 ± 0.01a 3.5 ± 0.07a 97.5 ± 0.31a 894.9 ± 0.37a 0.9 ± 0.01a
TPN 2.9 ± 0.01a 3.6 ± 0.01a 97.4 ± 0.38a 894.9 ± 0.28a 0.9 ± 0.01a
TSN 1 3.0 ± 0.03a 3.3 ± 0.04a 101.0 ± 0.30a 891.9 ± 0.32a 0.9 ± 0.01a
TSN 2 2.9 ± 0.01a 3.6 ± 0.03a 100.3 ± 0.23a 892.1 ± 0.26a 0.9 ± 0.01a

[i] Values are the average of triplicate determination from three different experiments (n = 9) ± standard deviation (SD). Means in a column with different letters are significantly different (p < 0.05).TS1-TS2= the key to the samples numbers can see in Table I.

No differences in the protein content were detected between TS1 and TS2 (3 g/L and 2.9 g/L respectively) compared with thermal pasteurized (TPN) (2.9 g/L) and unpasteurized (UPN) (2.9 g/L) nectars. According to Tian et al. (2004) this is attributable to the presence of sucrose in soursop nectar; which is used as an additive to stabilize proteins and avoiding them from unfolding. Also, minimal differences in protein content (less than 1%) in thermosonicated milk samples were reported after processing compared with raw milk (Bermúdez-Aguirre et al., 2009a b). It has previously been shown that application of ultrasound can break some aggregates of whey protein without causing denaturation of individual protein molecules (Chandrapala et al., 2012). This assumption implies possible enhancement of protein functionality (e.g. emulsions-viscosity) in the soursop nectar (Kentish et al., 2008; Güzey et al., 2006).

Thermosonication did not promote changes ( p > 0.05) in the fat content in soursop nectars. UPN and TPN nectars had a fat content of 3.5 g/L and 3.6 g/L, respectively, and no differences were observed after TS1 (3.3 g/L) and TS2 (3.6 g/L). According to Suzuki et al. (2010) the application of ultrasound (US) in fat samples did not increase the fat content, but, there was a reduction on fat globules size as evidenced during the evaluation of functional properties of anhydrous milk fat after US treatment. Nonetheless, the disruption of fat globules increased the homogenization of the samples (Bermúdez-Aguirre et al., 2009b). Our results are in agreement with Bermúdez-Aguirre & Barbosa-Cánovas (2008) who reported no changes in fat content after applying TS in milk.

Sugars are the major soluble solids in fruit juices (Cheng et al., 2007), and are considered as a quality parameter mainly due to their contribution to the sensory characteristics of the soursop nectar (Yusof & Ibrahim, 1994). There was an apparent increase in sugar content (2%) in TS1 (101 g/L) and TS2 (103 g/L) of soursop nectar, but this increase was not significant ( p > 0.05 ) compared with UPN (97.5 g/L) and TPN (97.5 g/L) nectars. Zou & Jiang (2016) reported a slight increase in the sugar content from 14.42 - 14.82 g/L in ultrasonicated carrot juice (40 kHz at 0.5 W/cm2of ultrasound intensity for 60 min). Also, similar trends were reported in thermosonicated jamun fruit juice (Shaheer et al., 2014) and milk (Bermúdez-Aguirre & Barbosa-Cánovas, 2008). Abid et al. (2014a) and Fonteles et al. (2012) reported an increase in sugar content after ultrasound treatment (US) of apple and cantaloupe melon juices, respectively. The increase in sugars content might be attributed to cell disruption (vegetable tissues) promoted by the US treatment, which promotes their release into the liquid (Lieu & Le 2010; Zou et al., 2010).

The moisture and ash contents were not significantly affected ( p > 0.05). The effect of TS on moisture content in fruit juice has not been reported yet. According to Khandpur & Gogate (2016), moisture content in fruit juice could be lost by evaporation (temperature effect) and may contribute to an increase in total soluble solids. Thus, TS treatments used in this work (TS1 and TS2) not cause TSS and sugars changes. Li et al. (2004) reported no significant changes (p >0.05) in ash content of soybeans treated with ultrasound. Abid et al. (2014b) and Aadil et al. (2015b) reported an increase in the contents of some minerals such as Ca2+and Mg2+, and a decrease in others such as K and Na, after application of ultrasound in apple and grape juices, respectively. They mentioned that loss of minerals is dependent on the type of mineral and type of fruit. Similar trends were reported by Ferreira et al. (2014) when applied ultrasound as a method for extraction of some minerals in chocolate powder.

The importance of dietary fiber (DF) content in fruit and vegetable juices and its implications in human nutrition and health as prebiotic and regulating the glucose and lipids levels (cholesterol and triacylglycerols) in blood has been reported previously (Goñi et al., 2009). Additionally, several authors have reported on the disruptive effect of TS on cell walls (vegetable tissues) increasing the content of several bioactive compounds (Yan et al., 2015; Proestos & Komaitis, 2006). However, the effect of TS on total dietary fiber content in thermosonicated soursop nectar (TSN) has not been reported yet. The soluble (SDF), insoluble (IDF) and total dietary fiber (TDF) contents in UPN, TPN, and TSN soursop nectars are listed in Table III. The SDF and TDF contents showed significant differences (p<0.05) between treatments. UPN nectar had a SDF content of 1.8 g/L of nectar and similar values were obtained in TS1 (1.9 g/L). In TPN nectar was measured a 28% more (2.3 g/L); while TS2 SDF had 33% (2.7 g/L) more, compared with UPN nectar. Ultrasound is well known for extracting some components caused by its disrupting effect on cell walls (Cruz-Cansino et al., 2016; Lieu & Le, 2010), and precipitation and solubilization (temperature effect) of some pectin substances present in soursop nectar can explain the increase in SDF content. According to Jovanović et al. (2017) the combination of acustic and thermal energy improves the efficiency of extraction by disruption of cellular structures. This feature leads to increase the cell membrane permeability and breakdown of secondary metabolites-herb matrix interactions, what cause enhancement of pectin substances solubility and may contribute to the increase in viscosity (Dhingra et al., 2012) of TSN nectars. Differences between TS1 and TS2 could be due to the increase in acoustic energy density (W/mL) on the treatment as mentioned by Evelyn & Silva (2016).

Table III

Soluble (SDF), insoluble (IDF) and total dietary fiber (TDF) of unpasteurized (UPN) traditionally pasteurized (TPN) and thermosonicated (TSN) soursop nectars stored at 4 ºC during 30 days.

Treatment SDF (g/L) IDF (g/L) TDF (g/L)
Fresh control 1.8 ± 0.02ª 3.4 ± 0.05ª 5.2 ± 0.02ª
Pasteurized control 2.3 ± 0.01b 3.0 ± 0.01ª 5.3 ± 0.02ª
TSN 1 1.9 ± 0.01ª 3.1 ± 0.01ª 5.0 ± 0.01ª
TSN 2 2.7 ± 0.01c 3.2 ± 0.01ª 5.9 ± 0.02c

[i] Values are the average of triplicate determination from three different experiments (n = 9) ± standard deviation (SD). Means in a column with different letters are significantly different (p < 0.05). TS1-TS2 = the key to the samples numbers can see in Table I.

According to Figuerola et al. (2005), IDF is related to water-insoluble compounds as cellulose, hemicellulose and lignin that are resistant to lyses. Dhingra et al. (2012) reported that heating generally changes the ratio of soluble to insoluble fiber. In this study no differences ( p > 0.05) on IDF content were obtained between treatments, and TDF depended on the SDF and IDT content. Differences between treatments in TDF are due to the SDF content. Additionally, soursop nectar could be considered as a good source of dietary fiber (Olagnero et al., 2007).

Turbidity, viscosity and electrical conductivity

Turbidity and viscosity are related to the suspended particles within the system, and both are considered as a quality parameter in fruit drinks (Lindsay-Rojas et al., 2016). The effect of thermosonication treatment on the turbidity of soursop nectar is given in Table IV. The TPN nectar (65°C ± 1 °C) and TSN nectars show an increase in turbidity of 18% (4,786 NTU) and 30% (TS1 and TS2) in comparison with UPN nectar (3,963 NTU). No differences ( p < 0.05 ) in turbidity were observed between TS1 and TS2. A decrease in turbidity and/or viscosity affects negatively the appearance of the soursop nectar due to the sedimentation of the suspended particles (Ertugay & Baslar, 2014). Quek et al. (2012) reported turbidity values between 703 to 913 NTU in soursop juice extracted by different hot-water methods. Differences in results are due to more solid particles in soursop nectar (14.5 °Brix) than soursop juice (4.5 - 6.7 °Brix) (Gao & Rupasinghe, 2012). Similar trends have been reported in applying TS in black mulberry juice (Dinçer & Topuz, 2015), cantaloupe melon (Fonteles et al., 2012), and apple juices (Ertugay & Baslar, 2014). Authors are in agreement that during TS treatment the suspended particles are reduced by cavitation effect and at the same time are dissolved by temperature (mainly pectin particles); increasing turbidity values; which are favored by the presence of high sugar concentrations (Zou & Jiang, 2016; Dahdouh et al., 2015). In addition, increase of turbidity depends on the acoustic energy density level (AED) as demonstrated by Dinçer & Topuz (2015). No differences in turbidity were detected when TS was applied at 0.86 W/mL and 1.26 W/mL of acoustic energy density (AED) in black mulberry juice compared to the increase in turbidity (40%) at 1.63 W/mL of AED in the same study.

Table IV

Turbidity, viscosity and electrical conductivity (EC) of unpasteurized (UPN), traditionally pasteurized (TPN) and thermosonicated (TSN) soursop nectars stored at 4 ºC during 30 days.

Treatment Turbidity (NTU) Viscosity (cP) EC (mS/cm)
Fresh control 3963.33 ± 25.16a 334.86 ± 0.45a 19.36 ± 0.15ª
Pasteurized control 4786. 66 ± 37.85b 336.03 ± 0.70ª 19.34 ± 0.15a
TS 1 5183.33 ± 15.27c 348.96 ± 0.32b 19.73 ± 0.15a
TS 2 5186.66 ± 15.27c 351.80 ± 0.45c 19.43 ± 0.15a

[i] Values are the average of triplicate determination from three different experiments (n = 9) ± standard deviation (SD). Means in a column with different letters are significantly different (p < 0.05). TS1-TS2 = the key to the samples numbers can see in Table I. NTU = Nephelometric Turbidity Unit. cP = Centipoise. mS = mili-Siemens.

UPN nectar had a viscosity value of 334 cP and TPN nectar of 336 cP (Table IV). These viscosity values are lower than reported in previous study (Ikegwu & Ekwu, 2009) in soursop juice (1,236 cP) and are similar to those reported in banana juice (395 cP) after enzyme treatment (0.1% enzyme concentration, 40 °C, 120 min) by Tapre & Jain (2014). Samples treated by TS showed an increase of 4% (TS1 - 349 cP) and 5% (TS2 - 352 cP) compared with UPN nectar. These results were similar to those previously reported by Wu et al. (2008). Their studies showed that the viscosity of tomato juice also significantly increased aſter TS treatment and they mentioned that viscosity can be influenced by AED and temperature. They explained that during TS, particle sizes are divided into fine particles (cavitation effect) and raise the solubilisation (temperature effect) of solid responsible for increasing viscosity. Also, results are in accordance to those of Aadil et al. (2015b) and Martínez-Flores et al. (2015) who reported an increase in viscosity up to 28% after TS treatment in grape and carrot juices. Conversely, Cruz-Cansino et al. (2015) reported a reduction of viscosity in purple cactus juice after TS (20 kHz; 50°C; 25 min); which might be attributable to a partial enzymatic inactivation (Engmann et al., 2014). According to Soria & Villamiel (2010), the effect of AED on viscosity can be temporary or permanent. In addition, the presence of some ions (e.g. Ca2+ and Mg2+) and high sugars concentration may contribute to maintaining viscosity (Dahdouh et al., 2015). Thermosonication enhances the viscosity and consistency in milk and yoghurt (Riener et al., 2009; 2010).

Electrical conductivity (EC) is related to soluble solids content and especially with the presence of ions (Palaniappan & Sastry, 1991). Results regarding the effect of TS treatments on the EC of soursop nectar are listed in Table IV. In this study, a slight increase in EC of TS1 and TS2 (19.73 and 19.43 mS/cm) soursop nectar compared with UPN (19.36 mS/cm) and TPN (19.34 mS/cm) nectars was observed, but this increase was not significant ( p > 0.05 ). Similar trends were reported in carrots (Zou & Jiang, 2016) and apple (Abid et al., 2014a) juices, or sweet whey (Barukčić et al., 2015) after sonication treatment, but differ from that mentioned by Aadil et al. (2015a) who reported a decrease in EC after TS in grape juice. Authors are in agreement that during sonication or TS treatment EC increase might be attributed to the increase in mineral elements or vitamin retention after treatment or the possible deterioration of ultrasound probe tip and small release of particles into model system (Jambrak et al., 2009). According to Moura et al. (1999) a decrease in EC can result in an increase in viscosity due to a decrease in the mobility of the ions.

Conclusions

The TS (1.4 W/mL and 54°C for 10 min) did not cause changes in the most of nutrients of soursop nectar, which it is important of the point of view nutritional. However, TS improved the nutritional quality with the bioaccessibility of SDF due to this compound is considered highly functional on the health. In the same way the changes in the viscosity and turbidity showed a better visual appearance of nectar. This work is important due to the fact that it is the first study that evaluated the effect of thermosonication on nutrimental content of soursop beverages.

Acknowledgments

The authors gratefully acknowledge financial support from Coca-Cola Company (Premio Ciencia y Tecnología de Alimentos 2013), Tecnológico Nacional de México (Grant No.5611.15-P), and the student scholarship (305910) from CONACYT-Mexico

References

1 

Aadil, R. M., Zeng, X. A., Wang, M. S., Liu, Z. W., Han, Z., Zhang, Z. H., Hong, J. & Jabbar, S. (2015a). A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int. J. Food Sci. Technol., 50, 1144-1150. DOI: 10.1111/ijfs.12767

R. M. Aadil X. A. Zeng M. S. Wang Z. W. Liu Z. Han Z. H. Zhang J. Hong S. Jabbar 2015A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juiceInt. J. Food Sci. Technol.501144115010.1111/ijfs.12767

2 

Aadil, R. M., Zeng, X. A., Zhang, Z. H., Wang, M. S., Han, Z., Jing, H. & Jabbar, S. (2015b). Thermosonication: a potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol., 50, 1275-1282. DOI: 10.1111/ijfs.12766

R. M. Aadil X. A. Zeng Z. H. Zhang M. S. Wang Z. Han H. Jing S. Jabbar 2015Thermosonication: a potential technique that influences the quality of grapefruit juiceInt. J. Food Sci. Technol.501275128210.1111/ijfs.12766

3 

Abid, M., Jabbar, S., Hu, B., Hashim, M. M., Wu, T., Lei, S. & Zeng, X. (2014a). Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem., 21, 984-990. http://dx.doi.org/10.1016/j.ultsonch.2013.12.003

M. Abid S. Jabbar B. Hu M. M. Hashim T. Wu S. Lei X. Zeng 2014Thermosonication as a potential quality enhancement technique of apple juiceUltrason. Sonochem.2198499010.1016/j.ultsonch.2013.12.003

4 

Abid, M., Jabbar, S., Wu, T., Hashim, M. M., Hu, B., Lei, S. & Zeng, X. (2014b). Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem., 21, 93-97. http://dx.doi.org/10.1016/j.ultsonch.2013.06.002

M. Abid S. Jabbar T. Wu M. M. Hashim B. Hu S. Lei X. Zeng 2014Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juiceUltrason. Sonochem.21939710.1016/j.ultsonch.2013.06.002

5 

Anaya-Esparza, L. M., Méndez-Robles, M. D., Sayago-Ayerdi, S. G., García-Magaña, M. D. L., Ramírez-Mares, M. V., Sánchez-Burgos, J. A., & Montalvo-González, E. (2017a). Effect of thermosonication on pathogenic bacteria, quality attributes and stability of soursop nectar during cold storage. CyTA-Journal of Food, 1, 1-9. http://dx.doi.org/10.1080/19476337.2017.1321587

L. M. Anaya-Esparza M. D. Méndez-Robles S. G. Sayago-Ayerdi M. D. L. García-Magaña M. V. Ramírez-Mares J. A. Sánchez-Burgos E. Montalvo-González 2017Effect of thermosonication on pathogenic bacteria, quality attributes and stability of soursop nectar during cold storageCyTA-Journal of Food11910.1080/19476337.2017.1321587

6 

Anaya-Esparza, L. M., Velázquez-Estrada, R. M., Roig, A X., García-Galindo, H. S., Sayago-Ayerdí, S. G. & Montalvo-González E. (2017b). Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol., 61, 26-37. http://dx.doi.org/10.1016/j.tifs.2016.11.020

L. M. Anaya-Esparza R. M. Velázquez-Estrada A X. Roig H. S. García-Galindo S. G. Sayago-Ayerdí E. Montalvo-González 2017Thermosonication: An alternative processing for fruit and vegetable juicesTrends Food Sci. Technol.61263710.1016/j.tifs.2016.11.020

7 

Anaya-Esparza, L. M., Velázquez-Estrada, R. M., Sayago-Ayerdi, S. G., Sánchez-Burgos, J. A., Ramírez-Mares, M. V., De Lourdes García-Magaña, M. & Montalvo-González, E. (2017c). Effect of thermosonication on polyphenol oxidase inactivation and quality parameters of soursop nectar.LWT-Food Sci. Technol., 75, 545-551. http://dx.doi.org/10.1016/j.lwt.2016.10.002

L. M. Anaya-Esparza R. M. Velázquez-Estrada S. G. Sayago-Ayerdi J. A. Sánchez-Burgos M. V. Ramírez-Mares M. De Lourdes García-Magaña E. Montalvo-González 2017Effect of thermosonication on polyphenol oxidase inactivation and quality parameters of soursop nectarLWT-Food Sci. Technol.7554555110.1016/j.lwt.2016.10.002

8 

AOAC. Association of Official Analytical Chemist Official method of analysis of association of official analytical chemists (2005).

AOAC. Association of Official Analytical Chemist Official method of analysis of association of official analytical chemists2005

9 

Barukčić, I., Lisak Jakopović, K., Herceg, Z., Karlović, S. & Božanić, R. (2015). Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. Innov. Food Sci. Emerg. Technol., 27, 94-101. http://dx.doi.org/10.1016/j.ifset.2014.10.013

I. Barukčić K. Lisak Jakopović Z. Herceg S. Karlović R. Božanić 2015Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet wheyInnov. Food Sci. Emerg. Technol.279410110.1016/j.ifset.2014.10.013

10 

Bermúdez-Aguirre, D. & Barbosa-Cánovas, G. V. (2008). Study of butter fat content in milk on the inactivation ofListeria innocuaATCC 51742 by thermo-sonication.Innov. Food Sci. Emerg. Technol., 9, 176-185. http://dx.doi.org/10.1016/j.ifset.2007.07.008

D. Bermúdez-Aguirre G. V. Barbosa-Cánovas 2008Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonicationInnov. Food Sci. Emerg. Technol.917618510.1016/j.ifset.2007.07.008

11 

Bermúdez-Aguirre, D., Corradini, M. G., Mawson, R. & Barbosa-Cánovas, G. V. (2009a). Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov. Food Sci. Emerg. Technol., 10, 172-178. http://dx.doi.org/10.1016/j.ifset.2008.11.005

D. Bermúdez-Aguirre M. G. Corradini R. Mawson G. V. Barbosa-Cánovas 2009Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonicationInnov. Food Sci. Emerg. Technol.1017217810.1016/j.ifset.2008.11.005

12 

Bermúdez-Aguirre, D., Mawson, R., Versteeg, K. & Barbosa-Cánovas, G. V. (2009b). Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. J. Food Qual., 32, 283-302. DOI: 10.1111/j.1745-4557.2009.00250.x

D. Bermúdez-Aguirre R. Mawson K. Versteeg G. V. Barbosa-Cánovas 2009Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatmentsJ. Food Qual.3228330210.1111/j.1745-4557.2009.00250.x

13 

Bermúdez-Aguirre, D., Mawson, R. & Barbosa-Cánovas, G. V. (2011). Study of possible mechanisms of inactivation of Listeria innocua in thermo-sonicated milk using scanning electron microscopy and transmission electron microscopy. J. Food Process. Preserv., 35, 767-777. DOI: 10.1111/j.1745-4549.2011.00527.x

D. Bermúdez-Aguirre R. Mawson G. V. Barbosa-Cánovas 2011Study of possible mechanisms of inactivation of Listeria innocua in thermo-sonicated milk using scanning electron microscopy and transmission electron microscopyJ. Food Process. Preserv.3576777710.1111/j.1745-4549.2011.00527.x

14 

Bligh, E. C. & Dyer, J. W. (1959). A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol., 37, 911-917. DOI: 10.1139/o59-099

E. C. Bligh J. W. Dyer 1959A rapid method of total lipid extraction and purificationCanadian J. Biochem. Physiol.3791191710.1139/o59-099

15 

Carrillo, E., Fiszman, S., Lahteenmaki, L., & Varela, P. (2014). Consumers’ perception of symbols and health claims as health-related label messages. A cross-cultural study. Food Res. Int., 62, 653-661. https://doi.org/10.1016/j.foodres.2014.04.028

E. Carrillo S. Fiszman L. Lahteenmaki P. Varela 2014Consumers’ perception of symbols and health claims as health-related label messages. A cross-cultural studyFood Res. Int.6265366110.1016/j.foodres.2014.04.028

16 

Chandrapala, J., Martin, G. J. O., Kentish, Z. S. E. & Ashokkumar, M. (2012). The effect of ultrasound on casein micelle integrity. J. Dairy Sci., 95, 6882-6890. http://dx.doi.org/10.3168/jds.2012-5318

J. Chandrapala G. J. O. Martin Z. S. E. Kentish M. Ashokkumar 2012The effect of ultrasound on casein micelle integrityJ. Dairy Sci.956882689010.3168/jds.2012-5318

17 

Cheng, L. H., Soh, C. Y., Liew, S. C. & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chem., 104, 1396-1401. http://dx.doi.org/10.1016/j.foodchem.2007.02.001

L. H. Cheng C. Y. Soh S. C. Liew F. F. Teh 2007Effects of sonication and carbonation on guava juice qualityFood Chem.1041396140110.1016/j.foodchem.2007.02.001

18 

CODEX STAN 247-2005. Codex Gen. Stand. Fruit Juices and Nectars. Rome: Food and Agriculture Organization. 2005. http://www.codexalimentarius.org/download/standards/10154/CXS_247e.pdf

CODEX Codex Gen. Stand. Fruit Juices and NectarsRomeFood and Agriculture Organization2005http://www.codexalimentarius.org/download/standards/10154/CXS_247e.pdf

19 

Cruz-Cansino, N. D. S., Montiel-Columna, N. L., Bautista-Velueta, P. G., Pérez-Tinoco, M. R., Alanís-García, E. & Ramírez-Moreno, E. (2016). Optimization of Thermoultrasound conditions for the processing of a prickly pear juice blend (Opuntia ficus indica) using response surface methodology. J. Food Qual., 39, 780-791. DOI: 10.1111/jfq.12247

N. D. S. Cruz-Cansino N. L. Montiel-Columna P. G. Bautista-Velueta M. R. Pérez-Tinoco E. Alanís-García E. Ramírez-Moreno 2016Optimization of Thermoultrasound conditions for the processing of a prickly pear juice blend (Opuntia ficus indica) using response surface methodologyJ. Food Qual.3978079110.1111/jfq.12247

20 

Cruz-Cansino, N. D. S., Ramírez-Moreno, E., León-Rivera, J. E., Delgado-Olivares, L., Alanís-García, E., Ariza-Ortega, J. A. & Jaramillo-Bustos, D. P. (2015). Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment.Ultrason. Sonochem., 27, 277-286.http://dx.doi.org/10.1016/j.ultsonch.2015.05.040

N. D. S. Cruz-Cansino E. Ramírez-Moreno J. E. León-Rivera L. Delgado-Olivares E. Alanís-García J. A. Ariza-Ortega D. P Jaramillo-Bustos 2015Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatmentUltrason. Sonochem.2727728610.1016/j.ultsonch.2015.05.040

21 

Dahdouh, L., Wisniewski, C., Kapitan-Gnimdu, A., Servent, A., Dornier, M., & Delalonde, M. (2015). Identification of relevant physicochemical characteristics for predicting fruit juices filterability.Sep. Purif. Technol. ,141, 59-67. https://doi.org/10.1016/j.seppur.2014.11.030

L. Dahdouh C. Wisniewski A. Kapitan-Gnimdu A. Servent M. Dornier M. Delalonde 2015Identification of relevant physicochemical characteristics for predicting fruit juices filterabilitySep. Purif. Technol.141596710.1016/j.seppur.2014.11.030

22 

Dhingra, D., Michael, M., Rajput, H. & Patil, R. T. (2012). Dietary fiber in foods: a review.J. Food Sci. Technol., 49, 255-266. DOI: 10.1007/s13197-011-0365-5

D. Dhingra M. Michael H. Rajput R. T. Patil 2012Dietary fiber in foods: a reviewJ. Food Sci. Technol.4925526610.1007/s13197-011-0365-5

23 

Dinçer, C. & Topuz, A. (2015). Inactivation ofEscherichia coliand quality changes in black mulberry juice under pulsed sonication and continuous thermosonication treatments.J. Food Process. Preserv. , 39, 1744-1753. DOI: 10.1111/jfpp.12406

C. Dinçer A. Topuz 2015Inactivation of Escherichia coli and quality changes in black mulberry juice under pulsed sonication and continuous thermosonication treatmentsJ. Food Process. Preserv.391744175310.1111/jfpp.12406

24 

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugar and related substances.Anal. Chem., 28, 350-356.

M. Dubois K. A. Gilles J. K. Hamilton P. A. Rebers F. Smith 1956Colorimetric method for determination of sugar and related substancesAnal. Chem.28350356

25 

Englyst, H. N. & Cummings, J. H. (1988). Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods.Journal of the Association of Official Anal. Chem., 71, 808-814.

H. N. Englyst J. H. Cummings 1988Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foodsJournal of the Association of Official Anal. Chem.71808814

26 

Engmann, F., Ma, Y., Tchabo, W., Ma, H. & Zhang, H. (2014). Optimization of ultrasonic and high hydrostatic pressure conditions on quality parameters of mulberry (Morus moraceae) juice using response surface methodology.J. Food Qual., 37, 297-308. DOI: 10.1111/jfq.12100

F. Engmann Y. Ma W. Tchabo H. Ma H. Zhang 2014Optimization of ultrasonic and high hydrostatic pressure conditions on quality parameters of mulberry (Morus moraceae) juice using response surface methodology.J. Food Qual.3729730810.1111/jfq.12100

27 

Ertugay, M. & Baslar, M. (2014). The effect of ultrasonic treatments on cloudy quality-related quality parameters in apple juice.Innov. Food Sci. Emerg. Technol., 26, 226-231. http://dx.doi.org/10.1016/j.ifset.2014.06.013

M. Ertugay M. Baslar 2014The effect of ultrasonic treatments on cloudy quality-related quality parameters in apple juiceInnov. Food Sci. Emerg. Technol.2622623110.1016/j.ifset.2014.06.013

28 

Evelyn, E. & Silva, F. V. (2016). High pressure processing pretreatment enhanced the thermosonication inactivation ofAlicyclobacillus acidoterrestrisspores in orange juice.Food Control., 62, 365-372. http://dx.doi.org/10.1016/j.foodcont.2015.11.007

E. Evelyn F. V. Silva 2016High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juiceFood Control.6236537210.1016/j.foodcont.2015.11.007

29 

Falguera, V., Sánchez-Riaño, A. M., Quintero-Cerón, J. P., Rivera-Barrero, C. A., Méndez-Arteaga, J. J. & Ibarz, A. (2012). Characterization of polyphenol oxidase activity in juices from 12 underutilized tropical fruits with high agroindustrial potential.Food Bioprocess Technol., 5, 2921 - 2927. DOI: 10.1007/s11947-011-0521-y

V. Falguera A. M. Sánchez-Riaño J. P. Quintero-Cerón C. A. Rivera-Barrero J. J. Méndez-Arteaga A. Ibarz 2012Characterization of polyphenol oxidase activity in juices from 12 underutilized tropical fruits with high agroindustrial potentialFood Bioprocess Technol.52921 292710.1007/s11947-011-0521-y

30 

FDA. Food and Drug Administration of United States of America. Guidance for Industry: Juice HACCP Hazards and Controls Guidance First Edition; Final Guidance. 2004. Available athttp://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Juice/ucm072557.htm

FDA. Food and Drug Administration of United States of America Guidance for Industry: Juice HACCP Hazards and Controls Guidance First Edition; Final Guidance2004http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/Juice/ucm072557.htm

31 

Ferrario, M., Alzamora, S. M. & Guerrero, S. (2015). Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound.Food Microbiol., 46, 635-642. http://dx.doi.org/10.1016/j.fm.2014.06.017

M. Ferrario S. M. Alzamora S. Guerrero 2015Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasoundFood Microbiol.4663564210.1016/j.fm.2014.06.017

32 

Ferreira, B. L., Chaves, E. S., Vialich, J. & Sauer, E. (2014). Ultrasound-assisted extraction from chocolate powder samples for the determination of Fe, K and Na.Brazilian J. Food Technol., 17, 236-242. http://dx.doi.org/10.1590/1981-6723.1514

B. L. Ferreira E. S. Chaves J. Vialich E. Sauer 2014Ultrasound-assisted extraction from chocolate powder samples for the determination of Fe, K and NaBrazilian J. Food Technol.1723624210.1590/1981-6723.1514

33 

Figuerola F., Hurtado, M. L., Estévez, A. M., Chiffelle, I. & Asenjo, F. (2005). Fiber concentrates from apple pomace and citrus peel as potential fiber sources for food enrichment.Food Chem., 91, 395-401. http://dx.doi.org/10.1016/j.foodchem.2004.04.036

F. Figuerola M. L. Hurtado A. M. Estévez I. Chiffelle F. Asenjo 2005Fiber concentrates from apple pomace and citrus peel as potential fiber sources for food enrichmentFood Chem.9139540110.1016/j.foodchem.2004.04.036

34 

Fonteles, T. V., Costa, M. G. M., De Jesus, A. L. T., De Miranda, M. R. A., Fernandes, F. A. N. & Rodrigues, S. (2012). Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters.Food Res. Int., 48, 41-48. http://dx.doi.org/10.1016/j.foodres.2012.02.013

T. V. Fonteles M. G. M. Costa A. L. T. De Jesus M. R. A. De Miranda F. A. N. Fernandes S. Rodrigues 2012Power ultrasound processing of cantaloupe melon juice: Effects on quality parametersFood Res. Int.48414810.1016/j.foodres.2012.02.013

35 

Gao, J. & Rupasinghe, H. P. V. (2012). Nutritional, physicochemical and microbial quality of ultrasound-treated apple-carrot juice blends.Food Nutr.Sci. ,3, 212-218. DOI: 10.4236/fns.2012.32031

J. Gao H. P. V. Rupasinghe 2012Nutritional, physicochemical and microbial quality of ultrasound-treated apple-carrot juice blendsFood Nutr.Sci.321221810.4236/fns.2012.32031

36 

Garud, S. R., Priyanka, B. S., Negi, P. S. & Rastogi, N. K. (2017). Effect of thermosonication on bacterial count in artificially inoculated model system and natural microflora of sugarcane juice.J. Food Process. Preserv. , 41,1-7. DOI: 10.1111/jfpp.12813

S. R. Garud B. S. Priyanka P. S. Negi N. K. Rastogi 2017Effect of thermosonication on bacterial count in artificially inoculated model system and natural microflora of sugarcane juiceJ. Food Process. Preserv.411710.1111/jfpp.12813

37 

Giner, M. J., Hizarci, O., Martí, N., Saura, D., & Valero, M. (2013). Novel approaches to reduce brown pigment formation and color changes in thermal Pasteurized tomato juice.Eur. Food Res. Technol., 236, 507-515. DOI: 10.1007/s00217-012-1900-y

M. J. Giner O. Hizarci N. Martí D. Saura M. Valero 2013Novel approaches to reduce brown pigment formation and color changes in thermal Pasteurized tomato juiceEur. Food Res. Technol.23650751510.1007/s00217-012-1900-y

38 

Goñi, I., Díaz-Rubio, M. E., Pérez-Jiménez, J. & Saura-Calixto, F. (2009). Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages.Food Res. Int., 42, 840-846. http://dx.doi.org/10.1016/j.foodres.2009.03.010

I. Goñi M. E. Díaz-Rubio J. Pérez-Jiménez F. Saura-Calixto 2009Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beveragesFood Res. Int.4284084610.1016/j.foodres.2009.03.010

39 

Güzey, D., Gülseren, I. Bruce, B. & Weiss, J. (2006). Interfacial properties and structural conformation of thermosonicated bovine serum albumin.Food Hydrocoll., 20, 669-677. http://dx.doi.org/10.1016/j.foodhyd.2005.06.008

D. Güzey I. Bruce Gülseren Weiss B. J. 2006Interfacial properties and structural conformation of thermosonicated bovine serum albuminFood Hydrocoll.2066967710.1016/j.foodhyd.2005.06.008

40 

Ikegwu, O. J. & Ekwu, F. C. (2009). Thermal and physical properties of some tropical fruits and their juices in Nigeria.J. Food Technol., 7, 38-42.http://medwelljournals.com/abstract/?doi=jftech.2009.38.42

O. J. Ikegwu F. C. Ekwu 2009Thermal and physical properties of some tropical fruits and their juices in NigeriaJ. Food Technol.73842http://medwelljournals.com/abstract/?doi=jftech.2009.38.42

41 

Jabbar, S., Abid, M., Hu, B., Hashim, M. M., Lei, S., Wu, T. & Zeng, X. (2015). Exploring the potential of thermosonication in carrot juice processing.J. Food Sci. Technol., 52, 7002-7013. DOI:10.1007/s13197-015-1847-7

S. Jabbar M. Abid B. Hu M. M. Hashim S. Lei T. Wu X. Zeng 2015Exploring the potential of thermosonication in carrot juice processingJ. Food Sci. Technol.527002701310.1007/s13197-015-1847-7

42 

Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G. & Badanjak, M. (2009), Physical properties of ultrasound treated soy proteins.J. Food Eng. ,93, 386-393. http://dx.doi.org/10.1016/j.jfoodeng.2009.02.001

A. R. Jambrak V. Lelas T. J. Mason G. Krešić M. Badanjak 2009Physical properties of ultrasound treated soy proteinsJ. Food Eng.9338639310.1016/j.jfoodeng.2009.02.001

43 

Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols fromThymus serpyllumL. herb using maceration, heat-and ultrasound-assisted techniques.Sep. Purif. Technol., 179, 369-380. https://doi.org/10.1016/j.seppur.2017.01.055

A. A. Jovanović V. B. Đorđević G. M. Zdunić D. S. Pljevljakušić K. P. Šavikin D. M. Gođevac B. M. Bugarski 2017Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniquesSep. Purif. Technol.17936938010.1016/j.seppur.2017.01.055

44 

Kentish, S., Wooster, T. J., Ashokkumar, K., Balachandran, S., Mawson, R. & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation.Innov. Food Sci. Emerg. Technol. , 9, 170-175. http://dx.doi.org/10.1016/j.ifset.2007.07.005

S. Kentish T. J. Wooster K. Ashokkumar S. Balachandran R. Mawson L. Simons 2008The use of ultrasonics for nanoemulsion preparationInnov. Food Sci. Emerg. Technol.917017510.1016/j.ifset.2007.07.005

45 

Khandpur, P. & Gogate, P. R. (2016). Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices.Ultrason. Sonochem. , 29, 337-353. http://dx.doi.org/10.1016/j.ultsonch.2015.10.008

P. Khandpur P. R. Gogate 2016Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juicesUltrason. Sonochem.2933735310.1016/j.ultsonch.2015.10.008

46 

Li, H., Pordesimo, L. & Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans.Food Res. Int. , 37, 731-738. http://dx.doi.org/10.1016/j.foodres.2004.02.016

H. Li L. Pordesimo J. Weiss 2004High intensity ultrasound-assisted extraction of oil from soybeansFood Res. Int.3773173810.1016/j.foodres.2004.02.016

47 

Lieu, L. N. & Le, V. V. M. (2010). Application of ultrasound in grape mash treatment in juice processing.Ultrason. Sonochem. , 17, 273-279. http://dx.doi.org/10.1016/j.ultsonch.2009.05.002

L. N. Lieu V. V. M. Le 2010Application of ultrasound in grape mash treatment in juice processingUltrason. Sonochem.1727327910.1016/j.ultsonch.2009.05.002

48 

Lindsay-Rojas, M., Hellmeister-Trevilin, J. & Duarte-Augusto, P. E. (2016). The ultrasound technology for modifying enzyme activity.Sci. Agropecu., 7, 145- 150. DOI: 10.17268/sci.agropecu.2016.02.07

M. Lindsay-Rojas J. Hellmeister-Trevilin P. E. Duarte-Augusto 2016The ultrasound technology for modifying enzyme activitySci. Agropecu.7145 15010.17268/sci.agropecu.2016.02.07

49 

Mañas, S. & Saura-Calixto, F. (1995). Dietary fiber analysis: methodological error sources.Eur. J. Clin. Nutr., 49, S158-S162

S. Mañas F. Saura-Calixto 1995Dietary fiber analysis: methodological error sourcesEur. J. Clin. Nutr.49S158S162

50 

Martínez-Flores, H. E., Garnica-Romo, M. G., Bermúdez-Aguirre, D., Pokhrel, P. R. & Barbosa-Cánovas, G. V. (2015). Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.Food Chem. , 172, 650-656. http://dx.doi.org/10.1016/j.foodchem.2014.09.072

H. E. Martínez-Flores M. G. Garnica-Romo D. Bermúdez-Aguirre P. R. Pokhrel G. V. Barbosa-Cánovas 2015Physico-chemical parameters, bioactive compounds and microbial quality of thermo-sonicated carrot juice during storage.Food Chem.17265065610.1016/j.foodchem.2014.09.072

51 

Moura, S. C. S. R., Vitali, A. De A. & Hubinger, M. D. A. (1999). Study of water activity and electrical conductivity in fruit juices: influence of temperature and concentration.Brazilian J. Food Technol. , 2, 31-38.

S. C. S. R. Moura A. De A. Vitali M. D. A. Hubinger 1999Study of water activity and electrical conductivity in fruit juices: influence of temperature and concentrationBrazilian J. Food Technol.23138

52 

Nafar, M., Emam-Djomeh, Z., Yousefi, S. & Hashemi, M. (2013). An Optimization study on the ultrasonic treatments forSaccharomyces cerevisiaeinactivation in red grape juice with maintaining critical quality attributes.J. Food Qual., 36, 269-281. DOI: 10.1111/jfq.12032

M. Nafar Z. Emam-Djomeh S. Yousefi M. Hashemi 2013An Optimization study on the ultrasonic treatments for Saccharomyces cerevisiae inactivation in red grape juice with maintaining critical quality attributesJ. Food Qual.3626928110.1111/jfq.12032

53 

National Advisory Committee on Microbiological Criteria for Foods, & National Advisory Committee on Microbiological Criteria for Foods (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization.Journal of Food Protection, 69, 1190-1216.

National Advisory Committee on Microbiological Criteria for Foods National Advisory Committee on Microbiological Criteria for Foods 2006Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurizationJournal of Food Protection6911901216

54 

Nwachukwu, E., & Ezeigdo, C. (2013). Changes in the microbial population of pasteurized soursop juice treated with benzoate and lime during storage.African J. Biotechnol. Res., 7, 3992-3995. DOI: 10.5897/AJMR2013.5854

E. Nwachukwu C. Ezeigdo 2013Changes in the microbial population of pasteurized soursop juice treated with benzoate and lime during storageAfrican J. Biotechnol. Res.73992399510.5897/AJMR2013.5854

55 

Olagnero, G., Abad, A., Bendersky, S., Genevois, C., Granzella, L. & Montonati, M. (2007). Functional foods: Fiber, Prebiotics, Probiotics and Simbiotics.DIAETA, 25, 20-33.

G. Olagnero A. Abad S. Bendersky C. Genevois L. Granzella M. Montonati 2007Functional foods: Fiber, Prebiotics, Probiotics and SimbioticsDIAETA252033

56 

Palaniappan, S. & Sastry, S. K. (1991). Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size.J. Food Process Engin., 14, 247-260. DOI: 10.1111/j.1745-4530.1991.tb00135.x

S. Palaniappan S. K. Sastry 1991Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle sizeJ. Food Process Engin.1424726010.1111/j.1745-4530.1991.tb00135.x

57 

Peters, M., Badrie, N. & Comissiong, E. (2000). Processing and quality evaluation of soursop (Annona muricataL.) nectar.J. Food Qual., 24, 361 - 374. DOI: 10.1111/j.1745-4557.2001.tb00616.x

M. Peters N. Badrie E. Comissiong 2000Processing and quality evaluation of soursop (Annona muricata L.) nectarJ. Food Qual.24361 37410.1111/j.1745-4557.2001.tb00616.x

58 

Proestos, C. & Komaitis, M. (2006). Ultrasonically assisted extraction of phenolic compounds from aromatic plants: comparison with conventional extraction technics.J. Food Qual. , 29, 567-582. DOI: 10.1111/j.1745-4557.2006.00096.x

C. Proestos M. Komaitis 2006Ultrasonically assisted extraction of phenolic compounds from aromatic plants: comparison with conventional extraction technicsJ. Food Qual.2956758210.1111/j.1745-4557.2006.00096.x

59 

Quek, M. C., Chin, N. L. & Yusof, Y. A. (2012). Optimisation and comparative study on extraction methods of soursop juice.J. Food, Agric. Environ., 10, 245-251.

M. C. Quek N. L. Chin Y. A. Yusof 2012Optimisation and comparative study on extraction methods of soursop juiceJ. Food, Agric. Environ.10245251

60 

Riener, J., Noci, F., Cronin, D. A., Morgan, D. J. & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation.Food Chem. , 114, 905-911. http://dx.doi.org/10.1016/j.foodchem.2008.10.037

J. Riener F. Noci D. A. Cronin D. J. Morgan J. G. Lyng 2009The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentationFood Chem.11490591110.1016/j.foodchem.2008.10.037

61 

Riener, J., Noci, F., Cronin, D. A., Morgan, D. J. & Lyng, J. G. (2010). A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks.Food Chem., 119, 1108-1113. http://dx.doi.org/10.1016/j.foodchem.2009.08.025

J. Riener F. Noci D. A. Cronin D. J. Morgan J. G. Lyng 2010A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milksFood Chem.1191108111310.1016/j.foodchem.2009.08.025

62 

Sánchez-Rubio, M., Taboada-Rodríguez, A., Cava-Roda, R., López-Gómez, A. & Marín-Iniesta, F. (2016). Combined use of thermo-ultrasound and cinnamon leaf essential oil to inactivateSaccharomyces cerevisiaein natural orange and pomegranate juices.LWT-Food Sci. Technol. , 73, 140-146. http://dx.doi.org/10.1016/j.lwt.2016.06.005

M. Sánchez-Rubio A. Taboada-Rodríguez R. Cava-Roda A. López-Gómez F. Marín-Iniesta 2016Combined use of thermo-ultrasound and cinnamon leaf essential oil to inactivate Saccharomyces cerevisiae in natural orange and pomegranate juicesLWT-Food Sci. Technol.7314014610.1016/j.lwt.2016.06.005

63 

Santhirasegaram, V., Razali, Z., & Somasundram, C. (2013). Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indicaL.) juice.Ultrason. Sonochem. , 20, 1276-1282. https://doi.org/10.1016/j.ultsonch.2013.02.005

V. Santhirasegaram Z. Razali C. Somasundram 2013Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juiceUltrason. Sonochem.201276128210.1016/j.ultsonch.2013.02.005

64 

Shaheer, C. A., Hafeeda, P., Kumar, R., Kathiravan, T., Kumar, D. & Nadanasabapathi, S. (2014). Effect of thermal and thermosonication on anthocyanin stability in jamun (Eugenia jambolana) fruit juice.Int. Food Res. J., 21, 2189-2194.

C. A. Shaheer P. Hafeeda R. Kumar T. Kathiravan D. Kumar S. Nadanasabapathi 2014Effect of thermal and thermosonication on anthocyanin stability in jamun (Eugenia jambolana) fruit juiceInt. Food Res. J.2121892194

65 

Soria, A. C. & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review.Trends Food Sci. Technol., 21, 323-331. http://dx.doi.org/10.1016/j.tifs.2010.04.003

A. C. Soria M. Villamiel 2010Effect of ultrasound on the technological properties and bioactivity of food: a reviewTrends Food Sci. Technol.2132333110.1016/j.tifs.2010.04.003

66 

Suzuki, A. H., Lee, J., Padilla, S.G. & Martini, S., (2010). Altering functional properties of fats using power ultrasound.J. Food Sci., 75, E208-E214. DOI:10.1111/j.1750-3841.2010.01572.x

A. H. Suzuki J. Lee S.G. Padilla S. Martini 2010Altering functional properties of fats using power ultrasoundJ. Food Sci.75E208E21410.1111/j.1750-3841.2010.01572.x

67 

Tapre, A. R. & Jain, R. K. (2014). Effect of enzymatic treatment on juice yield, viscosity and clarity of banana juice.Asian J. Dairy Food Res. ,33, 25-31. DOI: 10.5958/J.0976-0563.33.1.006

A. R. Tapre R. K. Jain 2014Effect of enzymatic treatment on juice yield, viscosity and clarity of banana juiceAsian J. Dairy Food Res.33253110.5958/J.0976-0563.33.1.006

68 

Tian, Z. M., Wan, M. X., Wang, S. P. & Kang, J. Q. (2004). Effects of ultrasound and additives on the function and structure of trypsin.Ultrason. Sonochem., 11, 399-404. http://dx.doi.org/10.1016/j.ultsonch.2003.09.004

Z. M. Tian M. X. Wan S. P. Wang J. Q. Kang 2004Effects of ultrasound and additives on the function and structure of trypsinUltrason. Sonochem.1139940410.1016/j.ultsonch.2003.09.004

69 

Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P. & Cullen, P. J. (2008). Effects of sonication on the kinetics of orange juice quality parameters.J. Agric. Food Chem. ,56, 2423-2428. DOI: 10.1021/jf073503y

B. K. Tiwari K. Muthukumarappan C. P. O’Donnell P. J. Cullen 2008Effects of sonication on the kinetics of orange juice quality parametersJ. Agric. Food Chem.562423242810.1021/jf073503y

70 

Wu, J., Gamage, T. V., Vilkhu, K. S., Simons, L. K. & Mawson, R. (2008). Effect of thermosonication on quality improvement of tomato juice.Innov. Food Sci. Emerg. Technol., 9, 186-195. http://dx.doi.org/10.1016/j.ifset.2007.07.007

J. Wu T. V. Gamage K. S. Vilkhu L. K. Simons R. Mawson 2008Effect of thermosonication on quality improvement of tomato juiceInnov. Food Sci. Emerg. Technol.918619510.1016/j.ifset.2007.07.007

71 

Yan, F., Fan, K., He, J. & Gao, M. (2015). Ultrasonic-assisted solvent extraction of carotenoids from rapeseed meal: optimization using response surface methodology.J. Food Qual., 38(6), 377-386. DOI: 10.1111/jfq.12154

F. Yan K. Fan J. He M. Gao 2015Ultrasonic-assisted solvent extraction of carotenoids from rapeseed meal: optimization using response surface methodologyJ. Food Qual.38637738610.1111/jfq.12154

72 

Yusof, S. & Ibrahim, N. (1994). Quality of soursop juice after pectinase enzyme treatment.Food Chem., 51, 83 - 88. https://doi.org/10.1016/0308-8146(94)90052-3

S. Yusof N. Ibrahim 1994Quality of soursop juice after pectinase enzyme treatmentFood Chem.5183 8810.1016/0308-8146(94)90052-3

73 

Zou, Y., & Jiang, A. (2016). Effect of ultrasound treatment on quality and microbial load of carrot juice.Food Sci.Technol., 36, 111-115. http://dx.doi.org/10.1590/1678-457X.0061

Y. Zou A. Jiang 2016Effect of ultrasound treatment on quality and microbial load of carrot juiceFood Sci.Technol.3611111510.1590/1678-457X.0061

74 

Zou, Y., Xie, C., Fan, G., Gu, Z., & Han, Y. (2010). Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies.Innov. Food Sci. Emerg. Technol. , 11, 611-615.

Y. Zou C. Xie G. Fan Z. Gu Y. Han 2010Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodiesInnov. Food Sci. Emerg. Technol.11611615



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.


Financiado por:

 

Proyecto C-290903

Licencia Creative Commons
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS, Volumen 23, 2020, es una publicación editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, Ciudad de México, México, a través de la Facultad de Estudios Superiores Zaragoza, Campus I, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, Teléfono: 55.56.23.05.27, http://tip.zaragoza.unam.mx, Correo electrónico revistatip@yahoo.com, Editor responsable: Dra. Martha Asunción Sánchez Rodríguez, Certificado de Reserva de Derechos al Uso Exclusivo del Título No. 04-2014-062612263300-203, ISSN: 2395-8723 ambos otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número Claudia Ahumada Ballesteros, Facultad de Estudios Superiores Zaragoza, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, fecha de la última modificación, 28 de julio de 2020.

Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo de la institución.