Rosenblueth, Martínez-Romero, Ramírez-Puebla, León, Rosas-Pérez, Bustamante-Brito, Rincón-Rosales, and Martínez-Romero: Endosymbiotic microorganisms of scaleinsects



INTRODUCTION

Insecta (insects) is the most successful class of animals on Earth. Seemingly, associated microorganisms have allowed insects to adapt to almost all ecosystems on the planet (Janson et al., 2008; Feldhaar, 2011). Insects with restricted diets, such as hematophagous insects that feed on blood (Rio et al., 2016) or phytophagous insects that feed on sap, bark, leaves or seeds (Hansen & Moran, 2014) face nutritional deficiencies of nitrogen, vitamins or lipids. Bacteria or fungi can provide insects with nutrients or metabolites that are deficient in their diet (Douglas, 2015; Harris et al., 2010; Hansen & Moran, 2014). Symbionts may inhabit inside insect cells and thus they have been designated “endosymbionts”.

More than 50 years ago, Buchner (1965) published his microscopic observations in a compendium of insect-associated bacteria. In his book “Endosymbiosis of Animals with Plant Microorganisms”, he described the morphology of bacteria that inhabit different tissues of phytophagous insects and he assumed that many insect bacteria have their origins in plants. Earlier microscopic studies of scale insect symbionts (or true cochineals) were performed by Walczuch in 1932 and Buchner included them in his 1965 review. Nowadays there is a large research interest in microorganisms associated with insects and several types of insect symbionts are known:

  • 1) Primary or essential endosymbionts. They reside inside specialized cells that are called bacteriocytes in the case of insect cells containing bacteria (Baumann et al., 2000), or mycetocytes when they harbor fungi. A transcriptional factor essential for bacteriocyte development was discovered in insects (Matsuura et al., 2015) and this sets the basis to further understand the evolution of intracellular symbiosis in insects. Bacteriocytes are sometimes clustered in structures called bacteriomes (Fig. 1) that are found in distinct insect species (Baumann, 2005). Bacteriome location and numbers are variable. There are often two bacteriomes per insect, but there can be one to four. They are located in different regions of the insect. In the so-called “nutritional symbiosis”, primary endosymbionts provide their hosts with nutrients that are deficient in the insect diet, such as essential amino acids and vitamins (Baumann, 2005; Moran et al., 2005).

  • 2) Facultative or secondary endosymbionts. They are not essential for the survival of their host. They may also be found inside bacteriocytes. Some of them protect the insect from the attack of wasps, nematodes, fungi, bacteria and viruses (Xie et al., 2014; Jaenike et al., 2010; Łukasik et al., 2013; Chrostek et al., 2013). They can also help insects in the degradation of plant toxic compounds such as monoterpenes or alkaloids, allowing insects to colonize or parasite plants. Secondary endosymbionts can protect insects from high temperatures (Tsuchida et al., 2004; Burke et al., 2010). Others can manipulate the reproductive capacity of the host (Werren et al., 2008). It is known that secondary symbionts alter cellular functions of hosts, ranging from signal transduction to apoptosis (Bentley et al., 2007; Ikeya et al., 2009). When bacteria do not confer an increased fitness, they may be lost without any negative consequence for the insect (Moran et al., 2005).

  • 3) Gut symbionts in crypts. They have been found only in some insects of the superfamily Pentatomomorpha, which includes bugs. They are often transmitted vertically by colonization of eggs, coprophagia or symbiotic capsules, but some species can be acquired from the environment by food as some of them are free-living. They also provide nutrients, degrade polymeric and toxic plant compounds and recycle nitrogen (Kikuchi et al., 2008).

  • 4) Gut symbionts. They contribute to the breakdown of complex chemical compounds and toxins. Gut symbionts may be vertically transferred from mother to offspring by fecal contamination, coprophagy and trophallaxis that leads to the inoculation of the gut bacteria to the progeny (Salem et al., 2015 ; Abdul Rahman et al., 2015). However, intestinal microbiota may be modified by changes in the diet. Except for termites, the number of species in insect microbiota is smaller than that of mammals. Diversity may vary in females and males and this is the case in monarch butterflies (Servín -Garcidueñas et al., 2014 and unpublished data). Using a functional approach, we have reported a meta-analysis of insect gut proteobacteria (Degli Esposti & Martínez-Romero, 2017).

Figure 1

Diagram of a dorsal section of a scale insect (Monophlebidae and Coelostomidiidae families), in which the location of bacteriomes and endosymbionts are shown. Based on diagrams of Walczuch (1932) and FISH experiments of Matsuura et al., (2009), Dhami et al., (2012), and Rosas-Pérez et al., (2014).

1405-888X-tip-21-01-00053-gf1.png

In this review, we will discuss primary and secondary endosymbionts, leaving aside gut and crypt bacteria. In general, a single insect hosts two or more different species of endosymbionts in co-symbiosis. Inheritability and reduced genomes are the most outstanding features of endosymbionts. Most endosymbionts cannot be cultured on standard laboratory media and to acknowledge this, most endosymbionts are designated “Candidatus” before the name of the species. To simplify descriptions here, we will not use the “Candidatus” designation. Some endosymbionts share their evolutionary history with their hosts. Maternal transfer, reduced genomes and co-divergence will be reviewed in this article focusing on scale insect endosymbionts. In addition, we present the diversity of bacterial and fungal symbionts found in two models of scale insects studied in our laboratory.

MATERNAL TRANSFER OF BACTERIAL SYMBIONTS

Vertical transfer refers to the transmission of endosymbionts from mothers to their offspring. It is a mechanism that ensures the permanence of these bacteria in insect populations. Endosymbionts are transmitted from the time the embryos are formed and when insects are born they already carry some bacteria (McFall-Ngai, 2002). By being transferred from one generation to another, bacteria can remain associated with insect species for millions of years. Of all endosymbionts studied so far, it is estimated that the oldest is Sulcia muelleri living for over 260 million years in a group of insects that includes cicadas, leafhoppers and planthoppers (Moran et al., 2005). Sulcia muelleri co-exists with different co-symbionts in different insects (Table I) and a metabolic complementation between the different co-symbionts that inhabit an insect seems to exist (McCutcheon & Moran, 2010). This means that if the genes that encode the biosynthetic pathway of a metabolite do not exist in one of the symbionts, they are probably present in other symbiont bacteria of the same insect.

Table I

Examples of co-symbionts (with phylum indicated) of Sulcia muelleri, the primary endosymbionts of Auchenorrhyncha

Co-symbiont Phylum Genome size (kb) Host (Family) Reference
Nasuia deltocephalinicola Betaproteobacteria * 112 Macrosteles quadrilineatus(Cicadellidae) Bennett & Moran, 2013
Zinderia insecticola Betaproteobacteria 208 Clastoptera arizonana(Clastopteridae) McCutcheon & Moran, 2010
Vidania fulgoroideae** Betaproteobacteria ND Oliarus filicicola(Cixiidae) Bressan & Mulligan, 2013
Purcelliella pentastirinorum** Gammaproteobacteria ND Oliarus filicicola(Cixiidae) Bressan & Mulligan, 2013
Baumannia cicadellinicola Gammaproteobacteria 686 Homalodisca coagulata(Cicadellidae) Wu et al., 2006
Arsenophonus*** Gammaproteobacteria ND Macrosteles laevis(Cicadellidae) Kobialka et al., 2016
Sodalis-like PSPU Gammaproteobacteria 1,380 Philaenus spumarius(Aphrophoridae) Koga & Moran, 2014
Hodgkinia cicadicola Alfaproteobacteria 144 Diceroprocta semicincta(Cicadidae) McCutcheon et al., 2009

* All betaproteobacteria co-symbionts might have the same origin in Auchenorrhyncha (as suggested by Bennett & Moran, 2013).

** Vidania and Purcelliella can be both co-symbionts of Sulcia in the same insect.

*** Arsenophonus resides inside Sulcia cells. This insect also harbours a Nasuia co-symbiont

ND No data available

Some bacteria may have recently become endosymbionts acquired from the transfer of endosymbionts from another insect (horizontal transfer) or from the environment. When an insect acquires a new endosymbiont bacterium, the insect may gain new characteristics, such as the ability to feed on another plant (Moran, 2007). It has recently been described that endosymbionts such as Wolbachia can be transferred between insects through the plants on which the insects feed (Li et al., 2017; Sintupachee et al., 2006). Besides diet, endosymbionts can be exchanged by parasitoid wasps that transmit them when they sting different insects (Ahmed et al., 2015). In different species of aphids, males may transfer symbiotic bacteria to females during intercourse (Moran & Dunbar, 2006).

ENDOSYMBIONT REDUCED GENOMES AND GENETRANSFER TO INSECT HOSTS

Since endosymbionts live inside insects and have been transferred vertically for millions of years, they display different characteristics than free-living bacteria. Endosymbionts have lost most of their genome, sometimes retaining even less than 10% of the original one (Bennett & Moran, 2013; Martínez-Cano et al., 2015). They no longer retain genes essential for free living. Genes preserved include those under selective pressure and those related to the synthesis of the nutrients that the insect requires. For this reason, endosymbionts of insects with similar diets have retained similar genes, in an example of convergent evolution.

Experimental evolution studies performed in the laboratory have shown that an initial massive loss of DNA blocks occurs rapidly in bacteria (Nilsson et al., 2005). Comparison between the genomes of endosymbionts and those of free-living bacteria suggests that after deletions have occurred there is a proliferation of repetitive elements that causes chromosomal rearrangements. Later on, there is a slow accumulation of deleterious mutations. Non-functional genes are then lost (Moran, 2003; Manzano-Marín & Latorre, 2016). The presence of pseudogenes in the genomes of some endosymbionts suggests that their genome is still in a reduction process.

Most endosymbionts have A + T rich genomes (Table II). They also have high rates of non-synonymous nucleotide substitutions in protein-encoding genes. Endosymbionts live in restricted environments that prevent recombination with other bacteria. The strict vertical transmission has an effect on the population structure since there is a bottleneck with a limited number of bacteria passing to the next generation. Successive bottlenecks during evolution reduce bacterial diversity and increase their mutation fixation rate (Moran, 2007).

Table II

Bacterial endosymbionts in scale insects.

Endosymbiont (Class) Host (FAMILY) Genome size (pb) %GC Number of pseudogenes Function Location Reference
Walczuchella monophlebidarum (Flavobacteria)P Llaveia axin axin (MONOPHLEBIDAE) 309,299 32.6 27 Provides amino acids Bacteriome & ovaries Rosas-Pérezet. al. (2014)
SodalisTME1 (Gammaproteobacteria)S 3,400,000 55.6 ND Provides amino acids & recycles uric acid Bacteriome & ovaries Rosas-Pérezet. al. (2017)
Tremblaya phenacola (Betaproteobacteria)P Phenacoccus avenae(PSEUDOCOCCIDAE) 170,756 42.2 178 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria)P Maconellicoccus hirsitus (PSEUDOCOCCIDAE) 138,415 61.8 136 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Doolittlea endobia (Gammaproteobacteria)S 834,723 44.2 564 Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria) P Ferrisia virgate (PSEUDOCOCCIDAE) 141,620 58.3 132 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Gullanella endobia (Gammaproteobacteria)S 938,041 28.9 461 Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria)P Planococcus citri (PSEUDOCOCCIDAE) 138,927 58.8 125 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Moranella endobia (Gammaproteobacteria)S 538,294 43.5 419 Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria) P Pseudococcus longispinus (PSEUDOCOCCIDAE) 144,042 58.9 134 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
2Sodalis-allied(Gammaproteobacteria)S 8,190,816 53.9 ND Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria)P Tryonimus perrisii (PSEUDOCOCCIDAE) 143,340 57.8 116 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Hoaglandella endobia (Gammaproteobacteria)S 628,221 42.8 510 Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Tremblaya princeps (Betaproteobacteria)P Paracoccus marginatus (PSEUDOCOCCIDAE) 140,306 58.2 124 Provides amino acids & vitamins Bacteriome Husnik & McCutcheon (2016)
Hoaglandella endobia (Gammaproteobacteria)S 352,837 30.6 273 Provides amino acids & vitamins Tremblaya cytoplasm Husnik & McCutcheon (2016)
Dactylopiibacterium carminicum (Betaproteobacteria)P Dactylopius coccus (DACTYLOPIIDAE) 3,589,384 62.7 ND Fixes N & recycles uric acid Ovaries Vera-Ponce de León et al. (2017)
Wolbachia bourtzisii wDacA (Alphaproteobacteria)S 1,170,000 35.1 ND Provides riboflavin & heme groups Ovaries Ramírez-Puebla et al.(2016)
Wolbachia pipientiswDacB (Alphaproteobacteria)S 1,498,000 34.1 ND Provides riboflavin & heme groups Ovaries Ramírez-Puebla et al.(2016)
Uzinura diaspidicola (Flavobacteria)P Diaspis echinocacti (DIASPIDIDAE) 263,431 30.2 7 Provides amino acids Bacteriocytes Sabree et. al. (2013)
Sulcia muelleristr. GWSS (Flavobacteria)P *Homalodisca vitripennis (CICADELLIDAE) 245,530 22.4 ND Provides amino acids Bacteriome Husnik & McCutcheon (2016)
Baumannia cicadellinicola (Gammaproteobacteria)S 686,192 33.2 9 Provides vitamins Bacteriome Wu et al. (2006)
Buchnera aphidicola str. APS (Gammaproteobacteria)P *Acyrtosiphon pisum (APHIDIDAE) 640,681 22.5 13 Provides riboflavin Bacteriome Shigenobu et al. (2000)
Carsonella rudii (Gammaproteobacteria)P *Pachypsylla venusta (PSYLLIDAE) 159,662 16.6 ND Provides amino acids Bacteriome Tamames et al. (2007)
Blochmannia floridanus (Gammaproteobacteria)P *Camponotus floridanus (FORMICIDAE) 705,557 27.4 6 Provides amino acids, participates in urea detoxification & N recycling Gut & ovaries Gil et al. (2003)

ND , no data available;

P , primary endosymbiont;

S , secondary endosymbiont;

* , non-scale insect.

In the evolutionary history of insects, it seems that endosymbiont replacements have occurred several times (Moran et al., 2005; Gruwell et al., 2010; Toju et al., 2013; Sudakaran et al., 2017) and this was shown experimentally with a secondary endosymbiont taking the place of a primary endosymbiont (Koga et al., 2003). The elimination of endosymbionts is also evident when bacterial genes of endosymbionts no longer present are found in the genomes of insects. It is presumed that these genes were transferred laterally by past endosymbionts that are no longer currently living in the insects, but have left a trace of their existence. Some insect genes of bacterial origin are transcribed in the bacteriome and may be required for the endosymbiotic relationship (Husnik et al., 2013; Sloan et al., 2014.). Lateral gene transfer from bacteria to the insect has been studied in four species of the suborder Sternorrhyncha (aphids, psyllids, whiteflies and mealybugs) (Nikoh & Nakabachi, 2009; Husnik et al., 2013; Sloan et al., 2014). Not all the transferred genes are the same in each species but they encode similar functions, such as peptidoglycan and amino acid biosynthesis (Sloan et al., 2014). Large genome fragments of Wolbachia have been found transferred to the chromosomes of mosquitoes (Aedes aegypti), vinegar fruit fly (Drosophila ananassae), beetles (Callosobruchus chinensis) and several species of parasitoid wasps of the genus Nasonia. Some of these genes have been found to be functional (Kondo et al., 2002; Dunning Hotopp et al., 2007; Nikoh et al., 2008; Klasson et al., 2009; Choi et al., 2015).

Extreme examples of reduced genomes are found in Nasuia and Vidania endosymbionts with genomes of 112 and 119 kb, respectively (Bennett et al., 2016). Endosymbionts with extreme genome reduction may need the insect contribution of essential enzymes or proteins as occurs in mitochondria. In some cases, several of these proteins are encoded by genes that were transferred from endosymbionts to the insect (Sloan et al., 2014). Remarkably, it was shown that a protein encoded by a gene of bacterial origin in an aphid, is transported to the endosymbiont (Nakabachi et al., 2014).

SHARED EVOLUTIONARY HISTORIES AMONG SYMBIONTS AND HOSTS

If endosymbiotic bacteria and their hosts remain associated for a long evolutionarily time, they can co-speciate or co-diverge together. In those cases, there is a phylogenetic congruence that can be traced back to a single infection event (Baumann et al., 2000).

Occasionally endosymbionts have evolutionary histories different from the hosts. This is more frequent in secondary co-symbionts due to endosymbiont losses, new acquisitions of environmental bacteria or lateral transfers from one insect species to another. Furthermore, it has been observed that secondary endosymbionts have a higher nucleotide substitution rate than primary symbionts (Bennett et al., 2014). Repeated sequences are found in co-symbionts such as Sodalis (enterobacteria) (Siguier et al., 2014).

It is considered that mitochondria evolved from an ancestral alphaproteobacterium more than a billion years ago and underwent a process of genome reduction (Gray, 1992; Gray, 1999; Martin, 2017) that might have been similar to the evolutionary process followed by insect endosymbionts (Sloan et al., 2014; Dunning Hotopp, 2011; McCutcheon, 2016). Mitochondria have very small genomes, in many cases rich in A + T such as in Insecta and Nematoda (Arunkumar & Nagaraju, 2006). Mitochondria have co-speciated with their hosts and they have transferred lots of genes to their hosts that encode proteins that are necessary for the mitochondria to carry out their metabolic functions (McCutcheon, 2016).

FUNGI SYMBIONTS IN INSECTS

Although bacteria-insect associations are usually the most studied, about eight orders of insects are known to host fungi. Arthropods and fungi have coexisted for around 200 million years and their earliest relationship dates from the Jurassic (Vega & Blackwell, 2005). Their interactions include all types of symbiosis, such as the obligatory mutualism of cicadas (Chen et al., 1981), commensalism of the Attini tribe of ants where fungi are their main food source, and parasitism (Hughes et al., 2016). Fungal symbionts can inhabit cavities within the insect such as the micangio in bark beetles (Jones et al., 1999; Klepzig & Six, 2004; Ganter, 2006), or in mycetocytes that are found in the rice pest Nilaparvata lugens or in Drosophila melanogaster (Cheng & Hou, 2001; Ebbert et al., 2003). Fungi can also inhabit the lumen of the digestive system, the Malpighian tubules, gonads and even venom-producing glands in Comperia merceti wasp (Gibson & Hunter, 2010; Rivera et al., 2009; Ricci et al., 2011; Vera-Ponce de León et al., 2016). Insects acquire fungi from other insects or by mycofagia when the insects feed directly from mycelia or yeasts as several species of Drosophila do (Gibson & Hunter, 2010; Becher et al, 2012). Fungi, like endosymbiont bacteria, can be transferred from the mother to her offspring such as the yeast-like symbionts in the case of N. lugens (Cheng & Hou, 2001) and Wickerhamomyces anomalus yeast in Anopheles stephensi mosquitoes (Ricci et al., 2011). The elimination of fungi causes a fitness decrease in their hosts (Sasaki et al., 1996; Menezes et al., 2015). The effects of fungi on host fitness have been demonstrated in cicadas (Sasaki et al., 1996) and in some beetles (Anobiidae and escolitins) (Ayres et al., 2000; Nasir & Noda, 2003). Fungi can supply insects with nitrogen metabolites and essential lipids lacking in their diet. They also participate in the degradation of high-density biological polymers, uric acid recycling, biotransformation of toxic chemicals in the environment, and pheromone production (D’Ettorre et al., 2002; Nasir & Noda, 2003; Vega & Blackwell, 2005; Vera-Ponce de León et al., 2016).

Bacterial endosymbionts of scaleinsects

Scale insects belong to the superfamily Coccoidea (Hemiptera: Sternorrhyncha) and include many plant pest species that cause enormous economic losses in agriculture (Miller et al., 2005). They all secrete a protective wax cover that gives the insect a cotton or waxy powder appearance (Fig. 2). Most of them feed on the plant’s phloem and are known as “cochineals”. There are about 7,800 species. Most adult females remain sessile once they introduce their stylet into the host plant. The stylet is a specialized mouth organ to suck sap. Some species of scale insects damage plants by transmitting diseases and by excretion of honeydew, a sticky waste substance composed of sugars and minerals that promotes fungal growth. Honeydew is a source of food for birds, mammals and other insects, especially for several species of ants (Kondo et al., 2009).

Figure 2

Photographs of some scale insect species mentioned in the review. Archive images from our group.

1405-888X-tip-21-01-00053-gf2.jpg

Symbiotic bacteria that provide scale insects with nitrogen metabolites, vitamins and co-factors have been described (Table II and Figure 3). Endosymbionts cannot be cultured in media in the laboratory because their highly reduced genomes lack many genes needed for independent living. Thus, their study relies on metagenomic analyses. Symbiont genome sequences deduced from metagenomes allows the inference of their metabolic capabilities and their role in symbiosis (e.g. Shigenobu et al., 2000; Sabree et al., 2013; Rosas-Pérez et al., 2014).

Figure 3

Phylogenetic reconstruction of 18S rRNA genes (570 bp) of scale insects and their relationship to bacterial endosymbionts with outgroup from Aphidoidea superfamily. One representative from each family or clade of scale insects was used. Different colors indicate the taxonomic identity of the endosymbionts: Flavobacteria, green; Alphaproteobacteria, yellow; Betaproteobacteria, blue; Gammaproteobacteria, red; Spiroplasma, purple. Dotted branches show endosymbiont losses. Branches from outside correspond to endosymbionts acquired by horizontal transfer. Asterisk shows the likely loss of Flavobacteria and replacement by other endosymbionts. All Flavobacteria except Brownia rhizoecola are phylogenetically related. The + sign at the nodes indicates a bootstrap value > 50%. Not all endosymbionts are present in all species from the same family. Diagram based on von Dohlen et al., 2001; Zchori-Fein et al., 2005; Gruwell et al., 2007; Matsuura et al., 2009; Gruwell et al., 2010; Rosenblueth et al., 2012; Dhami et al., 2013; Husnik & McCutcheon, 2016; Vera-Ponce de León et al., 2017.

1405-888X-tip-21-01-00053-gf3.jpg

The presence of endosymbionts within bacteriocytes has been detected in ten families of scale insects by culture independent methods (von Dohlen et al., 2001; Zchori-Fein et al., 2005; Gruwell et al., 2007; Matsuura et al., 2009; Gruwell et al., 2010; Rosenblueth et al., 2012; Dhami et al., 2013; Husnik & McCutcheon, 2016) (Figure 3). It is possible to locate these bacteria within bacteriocytes by fluorescent in situ hybridization (FISH) (Fig. 1; Kono et al., 2008; Matsuura et al., 2009; Dhami et al., 2012; Rosas-Pérez et al., 2014). Enterobacteriaceae (gammaproteobacteria), especially those close to the genus Sodalis (Sodalis-like) and Flavobacteria (Bacteroidetes), have been found in six families, namely Monophlebidae, Ortheziidae, Coelostomidiidae, Coccidae, Lecanodiaspididae and Diaspididae of the superfamily Coccoidea of scale insects (Table II; Figure 3). There is evidence that flavobacteria have been associated with scale insects since they appeared on Earth, about 150-250 million years ago. Sodalis has been reported in phylogenetically distant insects like the orders Coleoptera (such as weevils), Diptera (such as tsetse fly), Phthiraptera (like lice), and Hemiptera (like bugs, psyllids and spittlebugs) (Dale & Maudlin, 1999; Lefèvre et al., 2004; Fukatsu et al., 2007; Koga & Moran, 2014; Hosokawa et al., 2015; Morrow et al., 2017).

Apparently, scale insects of the Diaspididae family (Gruwell et al., 2007), and several families of the Arqueococcids (Figure 3; Rosenblueth et al., 2012; Dhami et al., 2013) co-speciated with their flavobacterial endosymbionts. In contrast, a high number of host changes have been reported in the enterobacterial co-symbiont. It has even been shown that several individual insects bear two different species of enterobacteria (Rosenblueth et al., 2012). It seems that several insects that lost their flavobacteria and enterobacteria, acquired back a flavobacterium by horizontal transfer from other scale insects, as is the case of several Neococcids. Flavobacteria have been replaced by other endosymbionts in at least three events, for example in species of the Putoidae family (by Spiroplasma and Wolbachia), Pseudococcidae (by Tremblaya) and Dactylopiidae (by Dactylopiibacterium, Spiroplasma and Wolbachia). The Phenacoccinae subfamily of the Pseudococcidae family, after acquiring Tremblaya, apparently lost it and got back a Flavobacterium. Two clades of Phenacoccinae acquired Flavobacterium, one of them from other scale insects and the other (Brownia rhizoecola) from outside scale insects. Brownia shows a greater identity with flavobacteria from unrelated insects such as those of leafhoppers and of cockroaches (Sulcia muelleri or Blattabacterium spp.) than with flavobacteria of scale insects (Gruwell et al., 2010; Rosenblueth et al, 2012.) (Fig. 3).

The endosymbiont bacteria of the Pseudococcidae family have been extensively studied since 1992 (Munson et al., 1992; Thao et al., 2002). They represent an exceptional case in endosymbiosis. Inside the cytoplasm of Tremblaya princeps (Betaproteobacteria) inhabits an enterobacterium close to the genus Sodalis (Husnik & McCutcheon, 2016).

Bacteria of the genus Wolbachia are secondary endosymbionts of over 40% of all arthropods and also of nematodes of the Onchocercidae family (Darby et al., 2012). In arthropods, some wolbachias manipulate the reproduction of their host, either by parthenogenesis, male feminization, male killing or cytoplasmic incompatibility (Werren et al., 2008). Some wolbachias benefit their hosts by providing them with protection against viral infections (Teixeira et al., 2008; Chrostek et al., 2013), or metabolites as riboflavin (Moriyama et al., 2015) or heme (Brownlie et al., 2009). Wolbachia have also been found in several species of scale insects (Figure 3) but it is not yet known whether they have an effect on the reproduction of their hosts.

Our research group has worked with three species of scale insects, Llaveia axin axin (Monophlebidae), Dactylopius opuntiae, and Dactylopius coccus (Dactylopiidae) (Figure 3). We described the bacterial (Ramírez-Puebla et al., 2010, 2016; Rosas-Pérez et al., 2014, 2017) and fungal (Vera-Ponce de León et al., 2016) communities associated with these two Mexican scale insect species. To illustrate the interactions of scale insects with their bacterial symbionts, we review the biology of these scale insects and the possible effects of their microbiota.

Llaveia axin axin (WAX COCHINEAL) AND BACTERIAL SYMBIONTS

Mesoamerican natives called the cochineal Llaveia axin axin “niij” (Fig. 2). Its annual life cycle presents hemimetabolism (gradual changes of egg, nymph and adult, without passing through the pupa stage). Females go through three stages of growth until they reach the adult state. They spend their entire life feeding from their host plant and at the end of their cycle they lay eggs in soil and then die. Under proper environmental conditions, the eggs hatch, nymphs emerge and disperse by moving or being blown by the wind. When they find an adequate plant, they settle on it. Like all scale insects, L. axin axin is exclusively phytophagous, feeding on the sap of plants such as Acacia cochliacantha, Acaciella angustissima, Jatropha curcas and Spondias sp. (Rincón-Rosales & Gutiérrez-Miceli, 2008). This hemipteran is of economic value in southern Mexico and since pre-Hispanic times a wax extracted from it is used to produce a lacquer to coat handicrafts (Williams & MacVean, 1995). It is worth mentioning that the population of niij has declined in recent years, mainly due to overexploitation, deforestation and the burning of the forests they inhabit (Rincón-Rosales & Gutiérrez-Miceli, 2008; Rosas-Pérez et al., 2014). The biology of this insect is little known. We studied its microbiota with metagenomic approaches.

Two endosymbiotic bacteria, a flavobacterium and an enterobacterium were found in the abdominal bacteriomes in L. axin axin (Fig. 2). DNA and RNA obtained from the bacteriomes were sequenced. Metagenomic and metatranscriptomic analyses of L. axin axin showed that both bacteria provide essential amino acids that the insects do not get from their diet. The flavobacterium, now named Walczuchella monophlebidarum, has a very small genome (309 kb) and its genetic repertoire is very similar to that of other phylogenetically distant flavobacteria, indicating a convergence in the evolution of different flavobacterial endosymbionts (Rosas-Pérez et al., 2014). Due to its reduced genetic repertoire, Walczuchella metabolically depends on Sodalis TME1 and their host.

The enterobacterium co-symbiont of L. axin axin, now named Sodalis TME1 (Rosas-Pérez et al., 2017), has a 3.41 Mb genome with high functional diversity. Its large number of mobile elements is indicative of an ongoing genomic reduction process. Sodalis, as other enterobacteria that are co-symbionts of flavobacteria, is considered a newly acquired endosymbiont (Michalik et al., 2014). Sodalis TME1 has genes that may participate in the suppression of defense mechanisms in the insect. Sodalis encodes a Type 3 secretion system (T3SS) and enzymes for polyamine synthesis, which have been recognized as modulators of the defense system of insects (Dale et al., 2001; Jelsbak et al., 2012).

The expression profiles of bacterial and insect genes in the bacteriome and in the ovary showed that Sodalis TME1 may secrete an effector, possibly injected by T3SS, to achieve the colonization of the bacteriome. While Sodalis actively recycles the insect’s waste nitrogen, the insect activates genes for transporters of different types of nutrients and produces an antimicrobial peptide (drosomycin-like) perhaps to keep the density of endosymbionts under control or to facilitate the metabolic exchange between symbiotic partners through membrane permeabilization (Mergaert et al., 2017).

In the ovary, Walczuchella seems to activate a response to oxidative stress, which the insect may use as a defense mechanism. In the ovary, the insect dramatically increases the production of energy for the development of eggs and activates genes encoding lysozyme and peptidoglycan binding proteins, maybe to control bacterial growth.

FUNGI ASSOCIATED WITH THEWAX COCHINEAL L. axin axin

A 500 bp fragments of fungal 18S rRNA and 26S rRNA ribosomal genes were recovered from three metagenomes from the wax cochineal, two from bacteriomes, and a third from a fully macerated insect (Vera-Ponce de León et al., submitted). These sequences allowed the identification of three phyla, Basidiomycota, Chitridiomycota and Ascomycota (Vera-Ponce de León, submitted). In the meta-assemblies of the metagenomes, genes that encode for triglyceride synthesis, purine metabolism and for uricase enzymes of Aspergillus sp. were found. This suggests that fungi associated with L. axin axin may produce lipids or provide nitrogen by recycling molecules such as uric acid and its derivatives, as has also been observed in beetles, grasshoppers and in the carmine cochineal (Sasaki et al., 1996; Nasir & Noda, 2003; Vera-Ponce de León et al., 2016). Genes encoding enzymes like phenol-monooxygenase, involved in the detoxification of xenobiotic compounds, were found, supporting the hypothesis that fungi may help the insect degrade the chemicals produced by the plants for their protection against insects. For example, Jatropha curcas, one plant on which L. axin axin insects feed, produces phorbol esters in high concentrations and various host plants of the niij produce tannins. It was observed that fungi found in the micangio of Dendroctonus beetles are capable of biotransforming toxic terpenoids and turning them into pine pheromones that attract insects of the same species (Brand et al., 1976).

Insects were collected for several years and using a culture-dependent approach, three fungi were isolated in culture. Phylogenetic analysis of 26S rRNA genes identified the three isolates within the genus Aspergillus spp. (Vera-Ponce de León et al., submitted). Aspergillus sequences were also found in the metagenome analyses and clearly, a larger diversity was shown by a culture-independent approach than by a culture-dependent approach. The former revealed several unknown fungi.

DACTYLOPIUS COCCUS (CARMINECOCHINEAL)

D. coccus is known as the carmine cochineal (Fig. 2), and it is of great economic importance because carminic acid (carmine or red E120) is obtained from these insects. Carminic acid is an anthraquinone glycoside that is industrially used as a red dye for food, textiles, and cosmetics (Deveoglu et al., 2011). The genus Dactylopius comprises 11 species: Dactylopius ceylonicus (Green), D. confusus (Cockerell), D. opuntiae (Cockerell), D. bassi, D. coccus (Costa), D. tomentosus (Lamarck), D. austrinus (De Lotto), D. confertus (De Lotto), D. gracilipilus (Van Dam & May), D. salmianus (De Lotto), D. zimmermanni (De Lotto) (Williams & Ben-Dov, 2015). The first six species are found in Mexico and D. coccus is the only one that has been domesticated and depends on human intervention to complete its reproductive cycle. Due to the high concentration and quality of its pigment, D. coccus has been cultivated since pre-Columbian times (Rodríguez et al., 2005). Individuals have a size of 1-6 mm in length. Like other scale insects, their life cycle consists of a hemimetabolous metamorphosis that lasts approximately 110 days. This species exhibits sexual dimorphism. Males are winged and smaller than females (Pérez-Guerra & Kosztarab, 1992). All individuals, males and females, are covered by a cottony secretion wax that protects them against predators or from the environment (Chávez-Moreno et al., 2009). These insects feed on the sap of Opuntiae and Nopalea cacti (Cactaceae: Opuntioidae) (Chávez-Moreno et al., 2009). The sap is composed of water (85-95%), carbohydrates (3-7%) and fiber (1-2%); however, it is poor in protein (0.5-1%) and lipids (0-0.2%) (Stintzing & Carle, 2005).

BACTERIA ASSOCIATED WITH D. COCCUS AND THEIR ROLEIN INSECT METABOLISM

The diversity of bacteria associated with Dactylopius cochineals has been well studied (Pankewitz et al., 2007; Ramírez-Puebla et al., 2010, 2015, 2016) not only in the domesticated species D. coccus but also in wild species. In D. coccus we found Wolbachia, Spiroplasma, Dactylopiibacterium carminicum (a betaproteobacterium), and diverse fungi (Ramírez-Puebla et al., 2010, 2015, 2016; Vera Ponce de León, 2016).

Two Wolbachia strains were found associated with D. coccus that were classified as Wolbachia bourtzisii wDacA and Wolbachia pipientis wDacB after a general proposal of species names in Wolbachia based on phylogenomic analyses (Ramírez-Puebla et al., 2015, 2016). The sizes of the genomes of Wolbachia (Ramírez-Puebla et al., 2016) are similar to those of other wolbachias and the Spiroplasma genome is also within the size range of its group genomes (1 Mb). All genes required for the synthesis of riboflavin and ubiquinone (vitamin Q) were found in the genomes of Wolbachia, suggesting that it provides these vitamins to its host. One of the Wolbachia species, the most abundant, may cause cytoplasmic incompatibility that affects the sex ratio in the progeny.

A bacterial phylogroup (END-1, now called Dactylopiibacterium carminicum) was the only bacterial species found in D. coccus (Ramírez-Puebla et al., 2010). Dactylopiibacterium is related to Uliginosibacterium gangwonense. From the D. coccus metagenomes we were able to reconstruct the entire genome of Dactylopiibacterium. Its characteristics are different to all betaproteobacterial genomes previously described as endosymbionts associated with Hemiptera and other scale insects (Table I; Table II). The size of the Dactylopiibacterium genome (3.6 Mb) is similar to those of free-living bacteria. This suggests that it is a recent symbiont that has not undergone a long process of genome reduction characteristic of other endosymbionts. Furthermore, the functional annotation of this genome has shown that the whole genetic machinery for biological nitrogen fixation (BNF) is present (Vera-Ponce de León et al., 2017). Acetylene reduction assays and analysis of nif gene expression of Dactylopiibacterium showed that BNF occurs in whole D. coccus insects, ovaries and intestines. There is good evidence that the betaproteobacterium Dactylopiibacterium fixes nitrogen in the cochineal and we suppose it alleviates the nitrogen deficiencies in the sap that the cochineal ingests.

In other insects, it has been observed that bacterial symbionts associated with gut, protists or fungal gardens, are able to fix nitrogen and provide it to the host (Ulyshen, 2015; Pinto-Tomás et al., 2009; Morales-Jiménez et al., 2013). In ant fungus gardens, Klebsiella variicola strains are found. These bacteria are not insect-specialized as they thrive in crop plants and hospital patients (Rosenblueth et al., 2004; Martínez et al., 2004).

Furthermore, sequence analysis of clones of bacterial ribosomal genes (16S rRNA) from amplicons obtained by PCR of total DNA extracted from various species of Dactylopius, revealed alphaproteobacteria close to Sphingomonas, Mesorhizobium, and Hepatincola porcellionum. Twelve ribo-clones of D. confusus were related to Acinetobacter (gammaproteobacteria) and betaproteobacteria such as Herbaspirillum and Massilia were also reported (Ramírez-Puebla et al., 2010). Several of these bacteria had been previously reported as plant endophytes (Rosenblueth & Martínez-Romero, 2006) and may colonize the cochineal gut.

FUNGI IN COCHINEAL CARMINEAND THEIR ROLEIN RECYCLING NITROGEN

The study of the fungal communities of D. coccus, D. confusus, and D. opuntiae by a culture-dependent approach revealed a total of 14 different fungal phylogroups associated with three Dactylopius species (Fig. 4). Although there is not a clear pattern between insect species and their fungal phylum groups, we observed that two yeast species Rhodotorula mucilaginosa and Cryptoccocus saitoi were present in females of all three species and in all locations sampled (Fig. 4). Penicillium fungi were detected in males of three Dactylopius species (Vera-Ponce de León et al., 2016). FISH analysis with probes targeting fungal ribosomal genes revealed the presence of C. saitoi in Malpighian tubules and embryos of D. coccus and D. opuntiae. Fungal ribosomal genes of Ascomycota, Basidiomycota, Chitridiomycota and Glomeromycota classes were found by metagenomic analyzes of hemolymph, ovaries, and guts of D. coccus females. Many sequences did not match to any previously reported sequence showing that there are novel fungi well adapted to live inside the carmine cochineals. Fungal genes involved in the bioconversion of uric acid (UA) to urea were identified in the metagenome. It is known that UA is the major waste metabolite from the nitrogen cycle in terrestrial insects. It has been estimated that this compound constitutes about 80% of the product of nitrogen catabolism in these organisms (Pant, 1988). In D. coccus, concentrations between 4 and 34 ng UA/μg -1 tissue, and uricase activity were detected in intestines and eggs. Importantly, no insect uricase gene was found in the metagenomes (Vera-Ponce de León et al., 2016). It was observed that most fungal phylogroups associated with Dactylopius use UA as their sole nitrogen source (Vera-Ponce de León et al., 2016). In tissues of D. opuntiae treated with antifungals to remove fungi, it was observed that UA concentration increased and uricase activity decreased. Furthermore, a significant decrease in the size and weight of treated insects was observed in comparison to control insects (Vera-Ponce de León et al., 2016). These results suggest that symbiotic fungi play an important role in nitrogen supply in Dactylopius. Such is the case in Nilaparvata leafhoppers where yeasts bio-convert UA to amino acids that can be used by their host.

Figure 4

Heat map indicating the presence (light gray) and absence (dark gray) of different species of fungi found with a culture-dependent approach by sequencing ITS of three Dactylopius species (Vera-Ponce de León et al., 2016).

1405-888X-tip-21-01-00053-gf4.jpg

CONCLUSIONS

It is common for many different insects to harbor various co-symbionts (Table I). This also happens in scale insects. There is a consensus that Flavobacteria are among the oldest symbionts, with largely reduced genomes, that provide essential amino acids to the host; but apparently, they frequently have to be metabolically complemented by other bacteria (Wu et al., 2006). Co-symbionts may confer some other additional benefits to the hosts besides helping to provide the ten essential amino acids we metazoans need. This may explain the co-occurrence of Flavobacteria with enterobacteria in many insects including the wax cochineal. However, these symbionts are not found in the carmine cochineal, in which there is a more diverse community. A comparative summary of some of the characteristic of the carmine and wax cochineal symbiosis is presented in Table III. In the carmine cochineal, we studied in particular Dactylopiibacterium that fixes nitrogen to compensate for the carbon-nitrogen imbalance found in cactus sap on which the insect feeds. Dactylopiibacterium may provide essential amino acids to the carmine cochineal as it has complete pathways for the biosynthesis of amino acids. Among the cochineals that we studied, we also detected differences in the composition of their associated fungi (Vera-Ponce de León et al., 2016). Despite the taxonomic differences, there are common functions in fungi from Nilaparvata, Dactylopius, and the wax cochineal L. axin-axin to recycle uric acid.

Table III

Symbiotic relationships, observed in carmin and wax cochineal.

Insect host Symbionts Phylum Possible role in symbiosis
Dactylopius coccus (carmine cochineal) Bacteria Dactylopiibacterium carminicum Proteobacteria (β) Biological nitrogen fixation
Wolbachia burtzisii wDacA Wolbachia pipientis wDacB Proteobacteria (α) Riboflavin and hemo synthesis
Fungi Cryptococcus saitoi Rhodotorula mucilaginosa Basidiomycota Uric acid recycling
Penicilliumsp. Ascomycota
Llaveia axin axin (wax cochineal) Bacteria Walczuchella monophlebidarum Bacteroidetes (Flavobacteria) Essential amino acids synthesis
SodalisTME1 Proteobacteria (γ) (Enterobacteriaceae) Metabolic complementation of Walczuchella, uric acid recycling
Fungi Aspergillussp. Ascomycota Lipid synthesis, uric acid recycling

This review shows the enormous plasticity of insect microbiota in different hosts and conditions. This is outstandingly illustrated in the case of Nilaparvata lugens which is the most destructive rice pest that originally could not attack resistant rice plants that lacked asparagine needed by the insect (Shigematsu et al., 1982), but the insects overcame the resistance when carrying yeast-like symbionts that provided amino acids (Ferrater et al., 2013).

REFERENCES

1 

Abdul Rahman, N., Parks, D.H., Willner, D.L., Engelbrektson, A.L., Goffredi, S.K., Warnecke, F., Scheffrahn, R.H. & Hugenholtz, P. (2015). A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome, 3, 5. DOI: 10.1186/s40168-015-0067-8

N. Abdul Rahman D.H. Parks D.L. Willner A.L. Engelbrektson S.K. Goffredi F. Warnecke R.H. Scheffrahn P. Hugenholtz 2015A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomesMicrobiome3510.1186/s40168-015-0067-8

2 

Ahmed, M.Z., Li, S.J., Xue, X., Yin, X.J., Ren, S.X. & Jiggins, F.M. (2015). The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLOS Pathogens, 10, e1004672. DOI: 10.1371/journal.ppat.1004672.

M.Z. Ahmed S.J. Li X. Xue X.J. Yin S.X. Ren F.M. Jiggins 2015The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmissionPLOS Pathogens10e100467210.1371/journal.ppat.1004672

3 

Arunkumar, K.P., & Nagaraju, J. (2006). Unusually long palindromes are abundant in mitochondrial control regions of insects and nematodes. PLoS One, 1, e110.

K.P. Arunkumar J. Nagaraju 2006Unusually long palindromes are abundant in mitochondrial control regions of insects and nematodesPLoS One1e110

4 

Ayres, M.P., Wilkens, R.T., Ruel, J., Lombardero, M.J. & Vallery, E. (2000). Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology, 8, 2198-2210.

M.P. Ayres R.T. Wilkens J. Ruel M.J. Lombardero E. Vallery 2000Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungiEcology821982210

5 

Baumann, P. (2005). Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Reviews in Microbiology, 59, 155-189.

P. Baumann 2005Biology bacteriocyte-associated endosymbionts of plant sap-sucking insectsAnnual Reviews in Microbiology59155189

6 

Baumann, P., Moran, N.A. & Baumann, L. (2000). Bacteriocyte associated endosymbionts of insects. In: The prokaryotes (M. Dworkin, ed.), pp. 155-189. Springer, New York.

P. Baumann N.A. Moran L. Baumann 2000Bacteriocyte associated endosymbionts of insectsThe prokaryotes M. Dworkin 155189SpringerNew York

7 

Becher, P.G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., Larsson, M.C., Hansson, B.S., Piškur, J., Witzgall, P. & Bengtsson, M. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology, 26, 822-828. DOI:10.1111/j.1365-2435.2012.02006.x.

P.G. Becher G. Flick E. Rozpędowska A. Schmidt A. Hagman S. Lebreton M.C. Larsson B.S. Hansson J. Piškur P. Witzgall M. Bengtsson 2012Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and developmentFunctional Ecology2682282810.1111/j.1365-2435.2012.02006.x

8 

Bennett, G.M., Abbà, S., Kube, M. & Marzachì C. (2016). Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announcements, 4, pii:e01604-15. DOI: 10.1128/genomeA.01604-15.

G.M. Bennett S. Abbà M. Kube C. Marzachì 2016Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous Leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae)Genome Announcements4e01604-1510.1128/genomeA.01604-15

9 

Bennett, G.M., McCutcheon, J.P., MacDonald, B.R., Romanovicz, D. & Moran, N.A. (2014). Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. MBio, 5, e01697-14. DOI: 10.1128/mBio.01697-14.

G.M. Bennett J.P. McCutcheon B.R. MacDonald D. Romanovicz N.A. Moran 2014Differential genome evolution between companion symbionts in an insect-bacterial symbiosisMBio5e01697-1410.1128/mBio.01697-14

10 

Bennett, G.M. & Moran, N.A. (2013). Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insect. Genome Biology and Evolution, 5, 1675-1688. DOI: 10.1093/gbe/evt118.

G.M. Bennett N.A. Moran 2013Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a Phloem-feeding insectGenome Biology and Evolution51675168810.1093/gbe/evt118

11 

Bentley, J.K., Veneti, Z., Heraty, J. & Hurst, G.D. (2007). The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biology, 15, 5:9.

J.K. Bentley Z. Veneti J. Heraty G.D. Hurst 2007The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosaBMC Biology15599

12 

Brand, J.M., Bracke, J.W., Britton, L.N., Markovetz, A.J. & Barras, S.J. (1976). Bark beetle pheromones: Production of verbenone by a mycangial fungus of Dendroctonus frontalis. Journal of Chemical Ecology, 2, 195-199.

J.M. Brand J.W. Bracke L.N. Britton A.J. Markovetz S.J. Barras 1976Bark beetle pheromones: Production of verbenone by a mycangial fungus of Dendroctonus frontalisJournal of Chemical Ecology2195199

13 

Bressan, A. & Mulligan, K.L. (2013). Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae). Environmental Microbiology Reports, 5, 499-505. DOI: 10.1111/1758-2229.12051

A. Bressan K.L. Mulligan 2013Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae)Environmental Microbiology Reports549950510.1111/1758-2229.12051

14 

Brownlie, J.C., Cass, B.N., Riegler, M., Witsenburg, J.J., Iturbe-Ormaetxe, I., McGraw, E.A. & O’Neill, S.L. (2009). Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathogens, 5, e1000368. DOI: 10.1371/journal.ppat.1000368.

J.C. Brownlie B.N. Cass M. Riegler J.J. Witsenburg I. Iturbe-Ormaetxe E.A. McGraw S.L. O’Neill 2009Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stressPLoS Pathogens5e100036810.1371/journal.ppat.1000368

15 

Buchner, P. (1965). Endosymbiosis of animals with plant microorganisms. Interscience, New York, NY, USA.

P. Buchner 1965Endosymbiosis of animals with plant microorganismsInterscienceNew York, NYUSA

16 

Burke, G., Fiehn, O. & Moran, N.A. (2010). Effects of facultative symbionts and heat stress on the metabolome of pea aphids. The ISME Journal, 4, 242-252.

G. Burke O. Fiehn N.A. Moran 2010Effects of facultative symbionts and heat stress on the metabolome of pea aphidsThe ISME Journal4242252

17 

Chávez-Moreno, C.K., Tecante, A. & Casas, A. (2009). The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodiversity and Conservation, 18, 3337-3355. DOI:10.1007/s10531-009-9647-x.

C.K. Chávez-Moreno A. Tecante A. Casas 2009The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distributionBiodiversity and Conservation183337335510.1007/s10531-009-9647-x

18 

Chen, C., Cheng, L. & Hou, R. (1981). Studies on the intracellular yeast-like symbiont in the Brown Planthopper, Nilaparvata lugens Stal. Zeitschrift für Angew. 92, 440-449.

C. Chen L. Cheng R. Hou 1981Studies on the intracellular yeast-like symbiont in the Brown Planthopper, Nilaparvata lugens StalZeitschrift für Angew92440449

19 

Cheng, D. J. & Hou, R. F. (2001). Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae). Tissue Cell, 33, 273-279. DOI:10.1054/tice.2001.0173.

D. J. Cheng R. F. Hou 2001Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae)Tissue Cell3327327910.1054/tice.2001.0173

20 

Choi, J.Y., Bubnell, J.E. & Aquadro, C.F. (2015). Population genomics of infectious and integrated Wolbachia pipientis genomes in Drosophila ananassae. Genome Biology and Evolution, 7, 2362-2382. DOI: 10.1093/gbe/evv158.

J.Y. Choi J.E. Bubnell C.F. Aquadro 2015Population genomics of infectious and integrated Wolbachia pipientis genomes in Drosophila ananassaeGenome Biology and Evolution72362238210.1093/gbe/evv158.

21 

Chrostek, E., Marialva, M.S.P., Esteves, S.S., Weinert, L.A., Martinez, J., Jiggins, F.M. & Teixeira, L. (2013). Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysis. PLoS Genetics, 9, e1003896.

E. Chrostek M.S.P. Marialva S.S. Esteves L.A. Weinert J. Martinez F.M. Jiggins L. Teixeira 2013Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysisPLoS Genetics9e1003896

22 

Dale, C. & Maudlin, I. (1999). Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. International Journal of Systematic and Evolutionary Microbiology, 49, 267-275. DOI: 10.1099/00207713-49-1-267

C. Dale I. Maudlin 1999Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitansInternational Journal of Systematic and Evolutionary Microbiology4926727510.1099/00207713-49-1-267

23 

Dale, C., Young, S.A., Haydon, D.T. & Welburn, S.C. (2001). The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 98, 1883-1888. DOI:10.1073/pnas.98.4.1883

C. Dale S.A. Young D.T. Haydon S.C. Welburn 2001The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasionProceedings of the National Academy of Sciences of the United States of America981883188810.1073/pnas.98.4.1883

24 

Darby, A.C., Armstrong, S.D., Bah, G.S., Kaur, G., Hughes, M.A., Kay, S.M., Koldkjær, P., Rainbow, L., Radford, A.D., Blaxter, M.L., Tanya, V.N., Trees, A.J., Cordaux, R., Wastling, J.M. & Makepeace, B.L. (2012). Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Research, 22, 2467-2477. DOI: 10.1101/gr.138420.112.

A.C. Darby S.D. Armstrong G.S. Bah G. Kaur M.A. Hughes S.M. Kay P. Koldkjær L. Rainbow A.D. Radford M.L. Blaxter V.N. Tanya A.J. Trees R. Cordaux J.M. Wastling B.L. Makepeace 2012Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosisGenome Research222467247710.1101/gr.138420.112

25 

Degli Esposti, M. & Martínez-Romero, E. (2017). The functional microbiome of arthropods. PLoS One, 12, e0176573. DOI: 10.1371/journal.pone.0176573.

M. Degli Esposti E. Martínez-Romero 2017The functional microbiome of arthropodsPLoS One12e017657310.1371/journal.pone.0176573

26 

D’Ettorre, P., Mora, P., Dibangou, V., Rouland, C. & Errard, C. (2002). The role of the symbiotic fungus in the digestive metabolism of two species of fungus-growing ants. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 172, 169-176. DOI:10.1007/s00360-001-0241-0.

P. D’Ettorre P. Mora V. Dibangou C. Rouland C. Errard 2002The role of the symbiotic fungus in the digestive metabolism of two species of fungus-growing antsJournal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology17216917610.1007/s00360-001-0241-0

27 

Deveoglu, O., Karadag, R. & Yurdun, T. (2011). Qualitative HPLC determination of main anthraquinone and lake pigment contents from Dactylopius coccus dye insect. Chemistry of Natural Compounds, 47, 103-104. DOI:10.1007/s10600-011-9842-3.

O. Deveoglu R. Karadag T. Yurdun 2011Qualitative HPLC determination of main anthraquinone and lake pigment contents from Dactylopius coccus dye insectChemistry of Natural Compounds4710310410.1007/s10600-011-9842-3

28 

Dhami, M.K., Buckley, T.R., Beggs, J.R., & Taylor, M.W. (2013). Primary symbiont of the ancient scale insect family Coelostomidiidae exhibits strict cophylogenetic patterns. Symbiosis, 61, 77-91.

M.K. Dhami T.R. Buckley J.R. Beggs M.W. Taylor 2013Primary symbiont of the ancient scale insect family Coelostomidiidae exhibits strict cophylogenetic patternsSymbiosis617791

29 

Dhami, M.K., Turner, A.P., Deines, P., Beggs, J.R. & Taylor, M.W. (2012). Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family Coelostomidiidae. FEMS Microbiology Ecology, 81, 537-546.

M.K. Dhami A.P. Turner P. Deines J.R. Beggs M.W. Taylor 2012Ultrastructural and molecular characterization of a bacterial symbiosis in the ecologically important scale insect family CoelostomidiidaeFEMS Microbiology Ecology81537546

30 

Douglas, A.E. (2015). Multiorganismal insects: Diversity and function of resident microorganisms. Annual Review of Entomology, 60, 17-34. DOI:10.1146/annurev-ento-010814-020822.

A.E. Douglas 2015Multiorganismal insects: Diversity and function of resident microorganismsAnnual Review of Entomology60173410.1146/annurev-ento-010814-020822

31 

Dunning Hotopp, J.C., Clark, M.E., Oliveira, D.C., Foster, J.M., Fischer, P., Torres, M.C.M., & Ingram, J. (2007). Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science, 317, 1753-1756.

J.C. Dunning Hotopp M.E. Clark D.C. Oliveira J.M. Foster P. Fischer M.C.M. Torres J. Ingram 2007Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotesScience31717531756

32 

Dunning Hotopp, J.C. (2011). Horizontal gene transfer between bacteria and animals. Trends in Genetics, 27, 157-163.

J.C. Dunning Hotopp 2011Horizontal gene transfer between bacteria and animalsTrends in Genetics27157163

33 

Ebbert, M.A., Marlowe, J.L., & Burkholder, J.J. (2003). Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. Journal of Invertebrate Pathology, 83, 37-45. DOI:10.1016/S0022-2011(03)00033-8.

M.A. Ebbert J.L. Marlowe J.J. Burkholder 2003Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infectionsJournal of Invertebrate Pathology83374510.1016/S0022-2011(03)00033-8

34 

Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36, 533-543. DOI: 10.1111/j.1365-2311.2011.01318.x

H. Feldhaar 2011Bacterial symbionts as mediators of ecologically important traits of insect hostsEcological Entomology3653354310.1111/j.1365-2311.2011.01318.x

35 

Ferrater, J.B., de Jong, P.W., Dicke, M. Chen, Y.H. , Horgan, F.G. (2013). Arthropod-Plant Interactions, 7, 591-605. DOI:10.1007/s11829-013-9277-9

J.B. Ferrater P.W. de Jong M. Dicke Y.H. Chen F.G. Horgan 2013Arthropod-Plant Interactions759160510.1007/s11829-013-9277-9

36 

Fukatsu, T., Koga, R., Smith, W.A., Tanaka, K., Nikoh, N., Sasaki-Fukatsu, K., Yoshizawa, K., Dale, C. & Clayton, D.H. (2007). Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Applied and environmental microbiology, 73, 6660-6668. DOI: 10.1128/AEM.01131-07

T. Fukatsu R. Koga W.A. Smith K. Tanaka N. Nikoh K. Sasaki-Fukatsu K. Yoshizawa C. Dale D.H. Clayton 2007Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse fliesApplied and environmental microbiology736660666810.1128/AEM.01131-07

37 

Ganter, P. (2006). Yeast and invertebrate associations. In: Biodiversity and ecophysiology of yeasts. The Yeast Handbook., Péter, G. & Rosa, C. (Eds.) Berlin/Heidelberg: Springer-Verlag, 303-370. DOI:10.1007/3-540-30985-3.

P. Ganter 2006Yeast and invertebrate associationsBiodiversity and ecophysiology of yeasts. The Yeast Handbook. Péter G. Rosa C. BerlinHeidelbergSpringerVerlag30337010.1007/3-540-30985-3

38 

Gibson, C.M. & Hunter, M.S. (2010). Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 13, 223-234. DOI:10.1111/j.1461-0248.2009.01416.x.

C.M. Gibson M.S. Hunter 2010Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insectsEcology Letters1322323410.1111/j.1461-0248.2009.01416.x

39 

Gil, R., Silva, F.J., Zientz, E., Delmotte, F., González-Candelas, F., Latorre, A., Rausell, C., Kamerbeek, J., Gadau, J., Hölldobler, B., van Hamm, R.C.H.J., Gross, R. & Moya, A. (2003). The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proceedings of the National Academy of Sciences of the United States of America, 100, 9388-9393; DOI:10.1073/pnas.1533499100.

R. Gil F.J. Silva E. Zientz F. Delmotte F. González-Candelas A. Latorre C. Rausell J. Kamerbeek J. Gadau B. Hölldobler R.C.H.J. van Hamm R. Gross A. Moya 2003The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomesProceedings of the National Academy of Sciences of the United States of America1009388939310.1073/pnas.1533499100

40 

Gray, M.W. (1992). The endosymbiont hypothesis revisited. International Review of Cytology, 141, 233-357.

M.W. Gray 1992The endosymbiont hypothesis revisitedInternational Review of Cytology141233357

41 

Gray, M.W. (1999). Evolution of organellar genomes. Current Opinion in Genetics & Development, 9, 678-687.

M.W. Gray 1999Evolution of organellar genomesCurrent Opinion in Genetics & Development9678687

42 

Gruwell, M.E., Hardy, N.B., Gullan, P.J. & Dittmar, K. (2010). Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Applied and Environmental Microbiology, 76, 7521-7525.

M.E. Gruwell N.B. Hardy P.J. Gullan K. Dittmar 2010Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae)Applied and Environmental Microbiology7675217525

43 

Gruwell, M.E., Morse, G.E. & Normark, B.B. (2007). Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Molecular Phylogenetics and Evolution, 44, 267-280.

M.E. Gruwell G.E. Morse B.B. Normark 2007Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum BacteroidetesMolecular Phylogenetics and Evolution44267280

44 

Hansen, A.K. & Moran, N. (2014). The impact of microbial symbionts on host plant utilization by herbivorous insects. Molecular Ecology, 23, 1473-1496. DOI:10.1111/mec.12421.

A.K. Hansen N. Moran 2014The impact of microbial symbionts on host plant utilization by herbivorous insectsMolecular Ecology231473149610.1111/mec.12421

45 

Harris, H.L., Brennan, L.J., Keddie, B.A. & Braig, H.R. (2010). Bacterial symbionts in insects: balancing life and death. Symbiosis, 51, 37-53. DOI:10.1007/s13199-010-0065-3.

H.L. Harris L.J. Brennan B.A. Keddie H.R. Braig 2010Bacterial symbionts in insects: balancing life and deathSymbiosis51375310.1007/s13199-010-0065-3

46 

Hosokawa, T., Kaiwa, N., Matsuura, Y., Kikuchi, Y. & Fukatsu, T. (2015). Infection prevalence of Sodalis symbionts among stinkbugs. Zoological letters, 1, 5. DOI: 10.1186/s40851-014-0009-5.

T. Hosokawa N. Kaiwa Y. Matsuura Y. Kikuchi T. Fukatsu 2015Infection prevalence of Sodalis symbionts among stinkbugsZoological letters15510.1186/s40851-014-0009-5

47 

Hughes, D.P., Araújo, J.P.M., Loreto, R.G., Quevillon, L., de Bekker, C. & Evans, H.C. (2016). From so simple a beginning. The evolution of behavioral manipulation by fungi. Advances in Genetics, 94, 1-33. DOI:10.1016/bs.adgen.2016.01.004.

D.P. Hughes J.P.M. Araújo R.G. Loreto L. Quevillon C. de Bekker H.C. Evans 2016From so simple a beginning. The evolution of behavioral manipulation by fungiAdvances in Genetics9413310.1016/bs.adgen.2016.01.004

48 

Husnik, F. & McCutcheon, J.P. (2016). Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E5416-24. DOI: 10.1073/pnas.1603910113.

F. Husnik J.P. McCutcheon 2016Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosisProceedings of the National Academy of Sciences of the United States of America113E5416-2410.1073/pnas.1603910113

49 

Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R.P., Fujie, M., Tanaka, M., Satoh, N., Bachtrog, D., Wilson, A.C., von Dohlen, C.D., Fukatsu, T. & McCutcheon, J.P. (2013). Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell, 153, 1567-1578.

F. Husnik N. Nikoh R. Koga L. Ross R.P. Duncan M. Fujie M. Tanaka N. Satoh D. Bachtrog A.C. Wilson C.D. von Dohlen T. Fukatsu J.P. McCutcheon 2013Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosisCell15315671578

50 

Ikeya, T., Broughton, S., Alic, N., Grandison, R. & Partridge, L. (2009). The endosymbiont Wolbachia increases insulin/IGF-like signaling in Drosophila. Proceedings of the Royal Society B: Biological Sciences, 276, 3799-3807. DOI: 10.1098/rspb.2009.0778.

T. Ikeya S. Broughton N. Alic R. Grandison L. Partridge 2009The endosymbiont Wolbachia increases insulin/IGF-like signaling in DrosophilaProceedings of the Royal Society B: Biological Sciences2763799380710.1098/rspb.2009.0778

51 

Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M. & Perlman, S.J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329, 212-215.

J. Jaenike R. Unckless S.N. Cockburn L.M. Boelio S.J. Perlman 2010Adaptation via symbiosis: recent spread of a Drosophila defensive symbiontScience329212215

52 

Janson, E.M., Stireman, J.O., Singer, M.S. & Abbot, P. (2008). Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution, 62, 997-1012. DOI:10.1111/j.1558-5646.2008.00348.x.

E.M. Janson J.O. Stireman M.S. Singer P. Abbot 2008Phytophagous insect-microbe mutualisms and adaptive evolutionary diversificationEvolution62997101210.1111/j.1558-5646.2008.00348.x

53 

Jelsbak, L., Thomsen, L.E., Wallrodt, I., Jensen, P.R. & Olsen, J.E. (2012). Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS One, 7, e36149. DOI: 10.1371/journal.pone.0036149.

L. Jelsbak L.E. Thomsen I. Wallrodt P.R. Jensen J.E. Olsen 2012Polyamines are required for virulence in Salmonella enterica serovar TyphimuriumPLoS One7e3614910.1371/journal.pone.0036149

54 

Jones, K.G., Dowd, P.F. & Blackwell, M. (1999). Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycological Research, 103, 542-546.

K.G. Jones P.F. Dowd M. Blackwell 1999Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetlesMycological Research103542546

55 

Kikuchi, Y., Hosokawa, T., & Fukatsu, T. (2008). Chapter II: Diversity of bacterial symbiosis in stinkbugs. In: Microbial Ecology Research Trends, Editor: Thijs Van Dijk pp 39-63.

Y. Kikuchi T. Hosokawa T. Fukatsu 2008Chapter II: Diversity of bacterial symbiosis in stinkbugsMicrobial Ecology Research Trends Thijs Van Dijk 3963

56 

Klasson, L., Kambris, Z., Cook, P. E., Walker, T., & Sinkins, S. P. (2009). Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics, 10, 33.

L. Klasson Z. Kambris P. E. Cook T. Walker S. P. Sinkins 2009Horizontal gene transfer between Wolbachia and the mosquito Aedes aegyptiBMC Genomics103333

57 

Klepzig, K. & Six, D. (2004). Bark beetle-fungal symbiosis: Context dependency in complex associations. Symbiosis, 37, 189-205.

K. Klepzig D. Six 2004Bark beetle-fungal symbiosis: Context dependency in complex associationsSymbiosis37189205

58 

Kobiałka, M., Michalik, A., Walczak, M., Junkiert, Ł. & Szklarzewicz, T. (2016). Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma, 253, 903-912. DOI: 10.1007/s00709-015-0854-x

M. Kobiałka A. Michalik M. Walczak Ł. Junkiert T. Szklarzewicz 2016Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteriaProtoplasma25390391210.1007/s00709-015-0854-x

59 

Koga, R. & Moran, N.A. (2014). Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME Journal, 8, 1237-1246. DOI: 10.1038/ismej.2013.235

R. Koga N.A. Moran 2014Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiontISME Journal81237124610.1038/ismej.2013.235

60 

Koga, R., Tsuchida, T. & Fukatsu, T. (2003). Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society of London B: Biological Sciences, 270, 2543-2550.

R. Koga T. Tsuchida T. Fukatsu 2003Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphidProceedings of the Royal Society of London B: Biological Sciences27025432550

61 

Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. (2002). Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proceedings of the National Academy of Sciences of the United States of America, 99, 14280-14285.

N. Kondo N. Nikoh N. Ijichi M. Shimada T. Fukatsu 2002Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insectProceedings of the National Academy of Sciences of the United States of America991428014285

62 

Kondo, T., Gullan, P. J., & Williams, D. J. (2009). Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Corpoica Ciencia y Tecnología Agropecuaria, 9, 55-61.

T. Kondo P. J. Gullan D. J. Williams 2009Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea)Corpoica Ciencia y Tecnología Agropecuaria95561

63 

Kono, M., Koga, R., Shimada, M. & Fukatsu, T. (2008). Infection dynamics of coexisting beta and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Applied and Environmental Microbiology, 74, 4175-4184.

M. Kono R. Koga M. Shimada T. Fukatsu 2008Infection dynamics of coexisting beta and gammaproteobacteria in the nested endosymbiotic system of mealybugsApplied and Environmental Microbiology7441754184

64 

Lefèvre, C., Charles, H., Vallier, A., Delobel, B., Farrell, B. & Heddi, A. (2004). Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Molecular Biology and Evolution, 21, 965-973. DOI: 10.1093/molbev/msh063

C. Lefèvre H. Charles A. Vallier B. Delobel B. Farrell A. Heddi 2004Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacementMolecular Biology and Evolution2196597310.1093/molbev/msh063

65 

Li, S.J., Ahmed, M.Z., Lv, N., Shi, P.Q., Wang, X.M., Huang, J.L. & Qiu, B.L. (2017). Plant-mediated horizontal transmission of Wolbachia between whiteflies. ISME Journal, 11, 1019-1028.

S.J. Li M.Z. Ahmed N. Lv P.Q. Shi X.M. Wang J.L. Huang B.L. Qiu 2017Plant-mediated horizontal transmission of Wolbachia between whitefliesISME Journal1110191028

66 

Łukasik, P., van Asch, M., Guo, H., Ferrari, J. & Godfray, H.C. (2013). Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecology Letters, 16, 214-218.

P. Łukasik M. van Asch H. Guo J. Ferrari H.C. Godfray 2013Unrelated facultative endosymbionts protect aphids against a fungal pathogenEcology Letters16214218

67 

McCutcheon, J.P., McDonald, B.R. & Moran, N.A. (2009). Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genetics, 5, e1000565. DOI: 10.1371/journal.pgen.1000565

J.P. McCutcheon B.R. McDonald N.A. Moran 2009Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiontPLoS Genetics5e100056510.1371/journal.pgen.1000565

68 

McCutcheon, J.P. & Moran, N.A. (2010). Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biology and Evolution, 2, 708-718. DOI: 10.1093/gbe/evq055

J.P. McCutcheon N.A. Moran 2010Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolutionGenome Biology and Evolution270871810.1093/gbe/evq055

69 

Manzano-Marín, A. & Latorre, A. (2016). Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica. Scientific Reports, 6, 32590. DOI: 10.1038/srep32590.

A. Manzano-Marín A. Latorre 2016Snapshots of a shrinking partner: Genome reduction in Serratia symbioticaScientific Reports6325903259010.1038/srep32590.

70 

Martin, W.F. (2017). Physiology, anaerobes, and the origin of mitosing cells 50 years on. Journal of Theoretical Biology, pii: S0022-5193(17)30004-8. DOI: 10.1016/j.jtbi.2017.01.004.

W.F. Martin 2017Physiology, anaerobes, and the origin of mitosing cells 50 years onJournal of Theoretical BiologyS0022-5193(17)30004-810.1016/j.jtbi.2017.01.004

71 

Martínez, J., Martínez, L., Rosenblueth, M., Silva, J. & Martínez-Romero, E. (2004). How are gene sequence analyses modifying bacterial taxonomy? The case of Klebsiella. International Microbiology, 7, 261-268.

J. Martínez L. Martínez M. Rosenblueth J. Silva E. Martínez-Romero 2004How are gene sequence analyses modifying bacterial taxonomy? The case of KlebsiellaInternational Microbiology7261268

72 

Martínez-Cano, D.J., Reyes-Prieto, M., Martínez-Romero, E., Partida-Martínez, L.P., Latorre, A., Moya, A. & Delaye, L. (2015). Evolution of small prokaryotic genomes. Frontiers in Microbiology, 5, 742. DOI: 10.3389/fmicb.2014.00742.

D.J. Martínez-Cano M. Reyes-Prieto E. Martínez-Romero L.P. Partida-Martínez A. Latorre A. Moya L. Delaye 2015Evolution of small prokaryotic genomesFrontiers in Microbiology574274210.3389/fmicb.2014.00742

73 

Matsuura, Y., Kikuchi, Y., Miura, T. & Fukatsu, T. (2015). Ultrabithorax is essential for bacteriocyte development. Proceedings of the National Academy of Sciences. U. S. A, 112, 9376-9381. DOI: 10.1073/pnas.1503371112.

Y. Matsuura Y. Kikuchi T. Miura T. Fukatsu 2015Ultrabithorax is essential for bacteriocyte developmentProceedings of the National Academy of Sciences. U. S. A1129376938110.1073/pnas.1503371112.

74 

Matsuura, Y., Koga, R., Nikoh, N., Meng, X.-Y., Hanada, S. & Fukatsu, T. (2009). Huge symbiotic organs in giant scale insects of the genus Drosicha (Coccoidea: Monophlebidae) harbor flavobacterial and enterobacterial endosymbionts. Zoological Science, 26, 448-456.

Y. Matsuura R. Koga N. Nikoh X.-Y. Meng S. Hanada T. Fukatsu 2009Huge symbiotic organs in giant scale insects of the genus Drosicha (Coccoidea: Monophlebidae) harbor flavobacterial and enterobacterial endosymbiontsZoological Science26448456

75 

McCutcheon, J.P. (2016). From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell. Current opinion in cell biology, 41, 132-136.

J.P. McCutcheon 2016From microbiology to cell biology: when an intracellular bacterium becomes part of its host cellCurrent opinion in cell biology41132136

76 

McFall-Ngai, MJ. (2002). Unseen forces: the influence of bacteria on animal development. Developmental Biology, 242, 1-14.

MJ. McFall-Ngai 2002Unseen forces: the influence of bacteria on animal developmentDevelopmental Biology242114

77 

Menezes, C., Vollet-Neto, A., Marsaioli, A.J., Zampieri, D., Fontoura, I.C., Luchessi, A.D. & Imperatriz-Fonseca, V.L. (2015). A Brazilian social bee must cultivate fungus to survive. Current Biology, 25, 2851-2855. DOI:10.1016/j.cub.2015.09.028.

C. Menezes A. Vollet-Neto A.J. Marsaioli D. Zampieri I.C. Fontoura A.D. Luchessi V.L. Imperatriz-Fonseca 2015A Brazilian social bee must cultivate fungus to surviveCurrent Biology252851285510.1016/j.cub.2015.09.028

78 

Mergaert, P., Kikuchi, Y., Shigenobu, S. & Nowack, E.C.M. (2017).Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol., 25, 703-712. DOI: 10.1016/j.tim.2017.04.007.

P. Mergaert Y. Kikuchi S. Shigenobu E.C.M. Nowack 2017Metabolic integration of bacterial endosymbionts through antimicrobial peptidesTrends Microbiol.2570371210.1016/j.tim.2017.04.007

79 

Michalik, A., Jankowska, W., Kot, M., Gołas, A. & Szklarzewicz, T. (2014). Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Structure and Development, 43, 579-587. DOI: 10.1016/j.asd.2014.07.005.

A. Michalik W. Jankowska M. Kot A. Gołas T. Szklarzewicz 2014Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi?Arthropod Structure and Development4357958710.1016/j.asd.2014.07.005

80 

Miller, D.R., Miller, G.L., Hodges, G.S. & Davidson, J.A. (2005). Introduced scale insects (Hemiptera: Coccoidea) of the United States and their impact on U.S. agriculture. Proceedings of the entomological Society of Washington, 107, 123-158.

D.R. Miller G.L. Miller G.S. Hodges J.A. Davidson 2005Introduced scale insects (Hemiptera: Coccoidea) of the United States and their impact on U.S. agricultureProceedings of the entomological Society of Washington107123158

81 

Morales-Jiménez, J., Vera-Ponce de León, A., García-Domínguez, A., Martínez-Romero, E., Zúñiga, G. & Hernández-Rodríguez, C. (2013). Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology, 66, 200-210. DOI: 10.1007/s00248-013-0206-3.

J. Morales-Jiménez A. Vera-Ponce de León A. García-Domínguez E. Martínez-Romero G. Zúñiga C. Hernández-Rodríguez 2013Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae)Microbial Ecology6620021010.1007/s00248-013-0206-3

82 

Moran, N.A. (2003). Tracing the evolution of gene loss in obligate bacterial symbionts. Current Opinion in Microbiology, 6, 512-518.

N.A. Moran 2003Tracing the evolution of gene loss in obligate bacterial symbiontsCurrent Opinion in Microbiology6512518

83 

Moran, N.A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8627-8633.

N.A. Moran 2007Symbiosis as an adaptive process and source of phenotypic complexityProceedings of the National Academy of Sciences of the United States of America10486278633

84 

Moran, N.A. & Dunbar, H.E. (2006). Sexual acquisition of beneficial symbionts in aphids. Proceedings of the National Academy of Sciences of the United States of America, 103, 12803-12806.

N.A. Moran H.E. Dunbar 2006Sexual acquisition of beneficial symbionts in aphidsProceedings of the National Academy of Sciences of the United States of America1031280312806

85 

Moran, N.A., Tran, P. & Gerardo, N.M. (2005). Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology, 71, 8802-8810.

N.A. Moran P. Tran N.M. Gerardo 2005Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum BacteroidetesApplied and Environmental Microbiology7188028810

86 

Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. (2015). Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. MBio, 6, e01732-15.

M. Moriyama N. Nikoh T. Hosokawa T. Fukatsu 2015Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect hostMBio6e01732-15

87 

Morrow, J.L., Hall, A.A.G. & Riegler, M. (2017). Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome, 5, 58. DOI: 10.1186/s40168-017-0276-4

J.L. Morrow A.A.G. Hall M. Riegler 2017Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllidsMicrobiome55810.1186/s40168-017-0276-4

88 

Munson, M.A., Baumann, P. & Moran, N.A. (1992). Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rRNA sequences. Molecular Phylogenetics and Evolution, 1, 26-30.

M.A. Munson P. Baumann N.A. Moran 1992Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rRNA sequencesMolecular Phylogenetics and Evolution12630

89 

Nakabachi, A., Ishida, K., Hongoh, Y., Ohkuma, M., & Miyagishima, S.Y. (2014). Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Current Biology, 24, R640-R641.

A. Nakabachi K. Ishida Y. Hongoh M. Ohkuma S.Y. Miyagishima 2014Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiontCurrent Biology24R640R641

90 

Nasir, H. & Noda, H. (2003). Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-dehydrocholesterol. Archives of Insect Biochemistry and Physiology, 52, 175-182. DOI:10.1002/arch.10079.

H. Nasir H. Noda 2003Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-dehydrocholesterolArchives of Insect Biochemistry and Physiology5217518210.1002/arch.10079

91 

Nikoh, N. & Nakabachi, A. (2009). Aphids acquired symbiotic genes via lateral gene transfer. BMC Biology, 7, 12.

N. Nikoh A. Nakabachi 2009Aphids acquired symbiotic genes via lateral gene transferBMC Biology71212

92 

Nikoh, N., Tanaka, K., Shibata, F., Kondo, N., Hizume, M., Shimada, M., & Fukatsu, T. (2008). Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Research, 18, 272-280.

N. Nikoh K. Tanaka F. Shibata N. Kondo M. Hizume M. Shimada T. Fukatsu 2008Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genesGenome Research18272280

93 

Nilsson, A.I., Koskiniemi, S., Eriksson, S., Kugelberg, E., Hinton, J.C.D. & Andersson, D.I. (2005). Bacterial genome size reduction by experimental evolution. Proceedings of the National Academy of Sciences of the United States of America, 102, 12112-12116.

A.I. Nilsson S. Koskiniemi S. Eriksson E. Kugelberg J.C.D. Hinton D.I. Andersson 2005Bacterial genome size reduction by experimental evolutionProceedings of the National Academy of Sciences of the United States of America1021211212116

94 

Pankewitz, F., Zöllmer, A., Hilker, M. & Gräser, Y. (2007). Presence of Wolbachia in insect eggs containing antimicrobially active anthraquinones. Microbial Ecology, 54, 713-721. DOI:10.1007/s00248-007-9230-5.

F. Pankewitz A. Zöllmer M. Hilker Y. Gräser 2007Presence of Wolbachia in insect eggs containing antimicrobially active anthraquinonesMicrobial Ecology5471372110.1007/s00248-007-9230-5

95 

Pant, R. (1988). Nitrogen excretion in insects. Proceedings: Animal Sciences, 97, 379-415.

R. Pant 1988Nitrogen excretion in insectsProceedings: Animal Sciences97379415

96 

Pérez-Guerra, G. & Kosztarab, M. (1992). Biosystematics of the family Dactylopiidae (Homoptera: Coccinea) with emphasis on the life cycle of Dactylopius coccus Costa. Bulletin-Virginia Agricultural Experiment Station, 92, 1-90.

G. Pérez-Guerra M. Kosztarab 1992Biosystematics of the family Dactylopiidae (Homoptera: Coccinea) with emphasis on the life cycle of Dactylopius coccus CostaBulletin-Virginia Agricultural Experiment Station92190

97 

Pinto-Tomás, A.A., Anderson, M.A., Suen, G., Stevenson, D.M., Chu, F.S., Cleland, W.W., Weimer, P.J. & Currie, C.R. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science, 326, 1120-1123. DOI: 10.1126/science.1173036.

A.A. Pinto-Tomás M.A. Anderson G. Suen D.M. Stevenson F.S. Chu W.W. Cleland P.J. Weimer C.R. Currie 2009Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter antsScience3261120112310.1126/science.1173036

98 

Ramírez-Puebla, S.T., Ormeño-Orrillo, E., León, A.V.-P.de, Lozano, L., Sánchez, A., Rosenblueth, M., & Martínez-Romero, E. (2016). Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3 Genes|Genomes|Genetics, 6, g3.116.031237. DOI:10.1534/G3.116.031237.

S.T. Ramírez-Puebla E. Ormeño-Orrillo A.V.-P.de León L. Lozano A. Sánchez M. Rosenblueth E. Martínez-Romero 2016Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae)G3 Genes|Genomes|Genetics6g3.116.03123710.1534/G3.116.031237

99 

Ramírez-Puebla, S.T., Rosenblueth, M., Chávez-Moreno, C.K., Catanho Pereira de Lyra, M.C., Tecante, A. & Martínez-Romero, E. (2010). Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteria. Environmental Entomology, 39, 1178-1183. DOI:10.1603/EN10037.

S.T. Ramírez-Puebla M. Rosenblueth C.K. Chávez-Moreno M.C. Catanho Pereira de Lyra A. Tecante E. Martínez-Romero 2010Molecular phylogeny of the genus Dactylopius (Hemiptera: Dactylopiidae) and identification of the symbiotic bacteriaEnvironmental Entomology391178118310.1603/EN10037

100 

Ramírez-Puebla, S.T., Servín-Garcidueñas, L.E., Ormeño-Orrillo, E., Vera-Ponce de León, A., Rosenblueth, M., Delaye, L., Martínez, J. & Martínez-Romero, E. (2015). Species in Wolbachia? Proposal for the designation of “Candidatus Wolbachia bourtzisii”, “Candidatus Wolbachia onchocercicola”, “Candidatus Wolbachia blaxteri”, “Candidatus Wolbachia brugii”, “Candidatus Wolbachia taylori”, “Candidatus Wolbachia collembolicola” and “Candidatus Wolbachia multihospitum” for the different species within Wolbachia supergroups. Systematic and Applied Microbiology, 38, 390-399. DOI:10.1016/j.syapm.2015.05.005.

S.T. Ramírez-Puebla L.E. Servín-Garcidueñas E. Ormeño-Orrillo A. Vera-Ponce de León M. Rosenblueth L. Delaye J. Martínez E. Martínez-Romero 2015Species in Wolbachia? Proposal for the designation of “Candidatus Wolbachia bourtzisii”, “Candidatus Wolbachia onchocercicola”, “Candidatus Wolbachia blaxteri”, “Candidatus Wolbachia brugii”, “Candidatus Wolbachia taylori”, “Candidatus Wolbachia collembolicola” and “Candidatus Wolbachia multihospitum” for the different species within Wolbachia supergroupsSystematic and Applied Microbiology3839039910.1016/j.syapm.2015.05.005

101 

Ricci, I., Mosca, M., Valzano, M., Damiani, C., Scuppa, P., Rossi, P., Crotti, E., Cappelli, A., Ulissi, U., Capone, A., Esposito, F., Alma, A., Mandrioli, M., Sacchi, L., Bandi, C., Daffonchio, D. & Favia, G. (2011). Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie Van Leeuwenhoek, 99, 43-50. DOI:10.1007/s10482-010-9532-3.

I. Ricci M. Mosca M. Valzano C. Damiani P. Scuppa P. Rossi E. Crotti A. Cappelli U. Ulissi A. Capone F. Esposito A. Alma M. Mandrioli L. Sacchi C. Bandi D. Daffonchio G. Favia 2011Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic controlAntonie Van Leeuwenhoek99435010.1007/s10482-010-9532-3

102 

Rincón-Rosales, R. & Gutiérrez-Miceli, F. (2008). Características biológicas de Acaciella angustissima (Mill.) Britton & Rose en su hábitat natural y evaluación de su potencial cortical en Chiapas, México. Agrociencia, 42, 129-137.

R. Rincón-Rosales F. Gutiérrez-Miceli 2008Características biológicas de Acaciella angustissima (Mill.) Britton & Rose en su hábitat natural y evaluación de su potencial cortical en Chiapas, MéxicoAgrociencia42129137

103 

Rio, R.V.M., Attardo, G.M. & Weiss, B.L. (2016). Grandeur alliances: Symbiont metabolic integration and obligate arthropod hematophagy. Trends in Parasitology, 32, 739-749. DOI:10.1016/j.pt.2016.05.002.

R.V.M. Rio G.M. Attardo B.L. Weiss 2016Grandeur alliances: Symbiont metabolic integration and obligate arthropod hematophagyTrends in Parasitology3273974910.1016/j.pt.2016.05.002

104 

Rivera, F. N., González, E., Gómez, Z., López, N., Hernández-Rodríguez, C., Berkov, A. & Zúñiga, G. (2009). Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biological Journal of the Linnean Society, 98, 325-342. DOI:10.1111/j.1095-8312.2009.01289.x.

F. N. Rivera E. González Z. Gómez N. López C. Hernández-Rodríguez A. Berkov G. Zúñiga 2009Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae)Biological Journal of the Linnean Society9832534210.1111/j.1095-8312.2009.01289.x

105 

Rodríguez, L. C., Faúndez, E., Seymour, J., Escobar, C. A., Espinoza, L., Petroutsa, M., Ayres, A. & Niemeyer, H. M. (2005). Factores bióticos y concentración de ácido carmínico en la cochinilla (Dactylopius coccus Costa) (Homoptera: Dactylopiidae). Agricultura Técnica, 65, 323-329. DOI:10.4067/S0365-28072005000300011.

L. C. Rodríguez E. Faúndez J. Seymour C. A. Escobar L. Espinoza M. Petroutsa A. Ayres H. M. Niemeyer 2005Factores bióticos y concentración de ácido carmínico en la cochinilla (Dactylopius coccus Costa) (Homoptera: Dactylopiidae)Agricultura Técnica6532332910.4067/S0365-28072005000300011

106 

Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. & Martínez-Romero, E. (2014). Genome sequence of “Candidatus Walczuchella monophlebidarum” the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biology and Evolution, 6, 714-726. DOI: 10.1093/gbe/evu049

T. Rosas-Pérez M. Rosenblueth R. Rincón-Rosales J. Mora E. Martínez-Romero 2014Genome sequence of “Candidatus Walczuchella monophlebidarum” the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae)Genome Biology and Evolution671472610.1093/gbe/evu049

107 

Rosas-Pérez, T., Vera-Ponce de León, A., Rosenblueth, M., Ramírez-Puebla, S.T., Rincón-Rosales, R., Martínez-Romero, J., Dunn, M.F., Kondorosi, E. & Martínez-Romero, E. (2017). Chapter 5. The symbiome of Llaveia Cochineals (Hemiptera: Coccoidea: Monophlebidae) includes a Gammaproteobacterial cosymbiont Sodalis TME1 and the known Candidatus Walczuchella monophlebidarum. In: Agricultural and Biological Sciences “Insect Physiology and Ecology”, Shields VDC (Ed.) ISBN 978-953-51-3034-5, ISBN 978-953-51-3033-8, DOI: 10.5772/66442.

T. Rosas-Pérez A. Vera-Ponce de León M. Rosenblueth S.T. Ramírez-Puebla R. Rincón-Rosales J. Martínez-Romero M.F. Dunn E. Kondorosi E. Martínez-Romero 2017Chapter 5. The symbiome of Llaveia Cochineals (Hemiptera: Coccoidea: Monophlebidae) includes a Gammaproteobacterial cosymbiont Sodalis TME1 and the known Candidatus Walczuchella monophlebidarumAgricultural and Biological Sciences “Insect Physiology and Ecology” VDC Shields 978-953-51-3034-5978-953-51-3033-810.5772/66442

108 

Rosenblueth, M., Martínez, L., Silva, J. & Martínez-Romero, E. (2004). Klebsiella variicola, a novel species with clinical and plant-associated isolates. Systematic and Applied Microbiology, 27, 27-35.

M. Rosenblueth L. Martínez J. Silva E. Martínez-Romero 2004Klebsiella variicola, a novel species with clinical and plant-associated isolatesSystematic and Applied Microbiology272735

109 

Rosenblueth, M. & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, 19, 827-837.

M. Rosenblueth E. Martínez-Romero 2006Bacterial endophytes and their interactions with hostsMolecular plant-microbe interactions19827837

110 

Rosenblueth, M., Sayavedra, L., Sámano-Sánchez, H., Roth, A. & Martínez-Romero, E. (2012). Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). Journal of Evolutionary Biology, 25, 2357-2368.

M. Rosenblueth L. Sayavedra H. Sámano-Sánchez A. Roth E. Martínez-Romero 2012Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea)Journal of Evolutionary Biology2523572368

111 

Sabree, Z.L., Huang, C.Y., Okusu, A., Moran, N.A. & Normark, B.B. (2013). The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Enviromental Microbiology, 15, 1988-1999. DOI: 10.1111/1462-2920.12058.

Z.L. Sabree C.Y. Huang A. Okusu N.A. Moran B.B. Normark 2013The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insectsEnviromental Microbiology151988199910.1111/1462-2920.12058

112 

Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. (2015). An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proceedings of the Royal Society B: Biological Sciences, 282, 20142957. DOI: 10.1098/rspb.2014.2957.

H. Salem L. Florez N. Gerardo M. Kaltenpoth 2015An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insectsProceedings of the Royal Society B: Biological Sciences2822014295710.1098/rspb.2014.2957

113 

Sasaki, T., Kawamura, M. & Ishikawa, H. (1996). Nitrogen recycling in the brown planthopper, Nilaparvata lugens: Involvement of yeast-like endosymbionts in uric acid metabolism. Journal of Insect Physiology, 42, 125-129.

T. Sasaki M. Kawamura H. Ishikawa 1996Nitrogen recycling in the brown planthopper, Nilaparvata lugens: Involvement of yeast-like endosymbionts in uric acid metabolismJournal of Insect Physiology42125129

114 

Servín-Garcidueñas, L.E., Sánchez-Quinto, A. & Martínez-Romero, E. (2014). Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering Monarch butterflies. Genome Announcements, 2, pii: e00128-14. DOI: 10.1128/genomeA.00128-14.

L.E. Servín-Garcidueñas A. Sánchez-Quinto E. Martínez-Romero 2014Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering Monarch butterfliesGenome Announcements2e00128-1410.1128/genomeA.00128-14.

115 

Shigematsu, Y., Murofushi, N., Ito, K., Kaneda, C., Kawabe, S., Takahashi, N. (1982). Sterols and asparagine in the rice plant, endogenous factors related to resistance against the brown planthopper (Nilaparvata lugens). Agricultural and Biological Chemistry, 46, 2877-2879.

Y. Shigematsu N. Murofushi K. Ito C. Kaneda S. Kawabe N. Takahashi 1982Sterols and asparagine in the rice plant, endogenous factors related to resistance against the brown planthopper (Nilaparvata lugens)Agricultural and Biological Chemistry4628772879

116 

Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81-86. DOI: 10.1038/35024074.

S. Shigenobu H. Watanabe M. Hattori Y. Sakaki H. Ishikawa 2000Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APSNature407818610.1038/35024074

117 

Siguier, P., Gourbeyre, E. & Chandler M. (2014). Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiology Reviews, 38, 865-891. DOI: https://doi.org/10.1111/1574-6976.12067

P. Siguier E. Gourbeyre M. Chandler 2014Bacterial insertion sequences: their genomic impact and diversityFEMS Microbiology Reviews3886589110.1111/1574-6976.12067

118 

Sintupachee, S., Milne, J.R., Poonchaisri, S., Baimai, V. & Kittayapong, P. (2006). Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microbial Ecology, 51, 294-301.

S. Sintupachee J.R. Milne S. Poonchaisri V. Baimai P. Kittayapong 2006Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plantMicrobial Ecology51294301

119 

Sloan, D.B., Nakabachi, A., Richards, S., Qu, J., Murali, S.C., Gibbs, R.A. & Moran, N.A. (2014). Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution, 31, 857-871.

D.B. Sloan A. Nakabachi S. Richards J. Qu S.C. Murali R.A. Gibbs N.A. Moran 2014Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insectsMolecular Biology and Evolution31857871

120 

Stintzing, F. C. & Carle, R. (2005). Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Molecular Nutrition & Food Research, 49, 175-194. DOI:10.1002/mnfr.200400071.

F. C. Stintzing R. Carle 2005Cactus stems (Opuntia spp.): a review on their chemistry, technology, and usesMolecular Nutrition & Food Research4917519410.1002/mnfr.200400071

121 

Sudakaran, S., Kost, C. & Kaltenpoth, M. (2017). Symbiont acquisition and replacement as a source of ecological innovation. Trends in Microbiology, 25, 375-390. DOI: 10.1016/j.tim.2017.02.014.

S. Sudakaran C. Kost M. Kaltenpoth 2017Symbiont acquisition and replacement as a source of ecological innovationTrends in Microbiology2537539010.1016/j.tim.2017.02.014

122 

Tamames, J., Gil, R., Latorre, A., Peretó, J., Silva, F.J. & Moya, A. (2007). The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evolutionary Biology, 7, 1-7. DOI: 10.1186/1471-2148-7-181.

J. Tamames R. Gil A. Latorre J. Peretó F.J. Silva A. Moya 2007The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddiiBMC Evolutionary Biology71710.1186/1471-2148-7-181

123 

Teixeira, L., Ferreira, A. & Ashburner, M. (2008). The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology, 6, e2. DOI: 10.1371/journal.pbio.1000002.

L. Teixeira A. Ferreira M. Ashburner 2008The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogasterPLoS Biology6e210.1371/journal.pbio.1000002

124 

Thao, M.L., Gullan, P.J. & Baumann, P. (2002). Secondary (Gammaproteobacteria) endosymbionts infect the primary (Betaproteobacteria) endosymbiont of mealybugs multiple times and coevolve with their hosts. Applied and Environmental Microbiology, 68, 3190-3197.

M.L. Thao P.J. Gullan P. Baumann 2002Secondary (Gammaproteobacteria) endosymbionts infect the primary (Betaproteobacteria) endosymbiont of mealybugs multiple times and coevolve with their hostsApplied and Environmental Microbiology6831903197

125 

Toju, H., Tanabe, A.S., Notsu, Y., Sota, T. & Fukatsu, T. (2013). Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME Journal, 7, 1378-1390.

H. Toju A.S. Tanabe Y. Notsu T. Sota T. Fukatsu 2013Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevilsISME Journal713781390

126 

Tsuchida, T., Koga, R. & Fukatsu, T. (2004). Host plant specialization governed by facultative symbiont. Science, 303, 1989.

T. Tsuchida R. Koga T. Fukatsu 2004Host plant specialization governed by facultative symbiontScience30319891989

127 

Ulyshen, M.D. (2015). Insect-mediated nitrogen dynamics in decomposing wood. Ecological Entomology, 40, 97-112. DOI: 10.1111/een.12176.

M.D. Ulyshen 2015Insect-mediated nitrogen dynamics in decomposing woodEcological Entomology409711210.1111/een.12176

128 

Vega, F. & Blackwell, M. (2005). Insect-fungal associations: ecology and evolution. New York: Oxford University Press, Vega, F.E. & Blackwell, M. (Eds.).

F. Vega M. Blackwell 2005Insect-fungal associations: ecology and evolutionNew YorkOxford University Press F.E. Vega M. Blackwell

129 

Vera-Ponce de León, A., Sánchez-Flores, A., Rosenblueth, M. & Martínez-Romero, E. (2016). Fungal community associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and its role in uric acid metabolism. Frontiers in Microbiology, 7, 1-15. DOI:10.3389/fmicb.2016.00954.

A. Vera-Ponce de León A. Sánchez-Flores M. Rosenblueth E. Martínez-Romero 2016Fungal community associated with Dactylopius (Hemiptera: Coccoidea: Dactylopiidae) and its role in uric acid metabolismFrontiers in Microbiology711510.3389/fmicb.2016.00954

130 

Vera-Ponce de León, A., Ormeño-Orrillo, E., Ramírez-Puebla, S.T, González-Román, P., Rosenblueth, M., Degli Esposti, M., Martínez, J., Martínez-Romero, E. (2017). Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of the cochineal insect Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae). Genome Biology and Evolution. doi.org/10.1093/gbe/evx156.

A. Vera-Ponce de León E. Ormeño-Orrillo S.T Ramírez-Puebla P. González-Román M. Rosenblueth M. Degli Esposti J. Martínez E. Martínez-Romero 2017Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of the cochineal insect Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae)Genome Biology and Evolution10.1093/gbe/evx156

131 

von Dohlen, C. D., Kohler, S., Alsop, S.T. & McManus, W.R. (2001). Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature, 412, 433-436.

C. D. von Dohlen S. Kohler S.T. Alsop W.R. McManus 2001Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbiontsNature412433436

132 

Walczuch, A. (1932). Studien an Coccidensymbionten. Zeitschrift für Morphologie und Ökologie der Tiere, 25, 623-729.

A. Walczuch 1932Studien an CoccidensymbiontenZeitschrift für Morphologie und Ökologie der Tiere25623729

133 

Werren, J.H., Baldo, L. & Clark, M.E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6, 741-751. DOI: 10.1038/nrmicro1969.

J.H. Werren L. Baldo M.E. Clark 2008Wolbachia: master manipulators of invertebrate biologyNature Reviews Microbiology610.1038/nrmicro1969

134 

Williams, D. J. & Ben-Dov, Y. (2015). Scale insect species names that have been combined with the genus name Dactylopius Costa (Hemiptera: Sternorrhyncha: Coccomorpha). Zootaxa, 4006, 161-70. DOI: http://dx.doi.org/10.11646/zootaxa.4006.1.8.

D. J. Williams Y. Ben-Dov 2015Scale insect species names that have been combined with the genus name Dactylopius Costa (Hemiptera: Sternorrhyncha: Coccomorpha)Zootaxa400616117010.11646/zootaxa.4006.1.8

135 

Williams, M. & MacVean, C. (1995). Ethnococcidology: use of the giant margarodids, by indigenous peoples of Mesoamerica in their culture, medicine and arts. Israel Journal of Entomology, XXIX, 147-148.

M. Williams C. MacVean 1995Ethnococcidology: use of the giant margarodids, by indigenous peoples of Mesoamerica in their culture, medicine and artsIsrael Journal of EntomologyXXIX147148

136 

Wu, D., Daugherty, S.C., Van Aken, S.E., Pai, G.H., Watkins, K.L., Khouri, H., Tallon, L.J., Zaborsky, J.M., Dunbar, H.E., Tran, P.L., Moran, N.A. & Eisen, J.A. (2006). Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLOS Biology, 4, 1079-1092. DOI: 10.1371/journal.pbio.0040188

D. Wu S.C. Daugherty S.E. Van Aken G.H. Pai K.L. Watkins H. Khouri L.J. Tallon J.M. Zaborsky H.E. Dunbar P.L. Tran N.A. Moran J.A. Eisen 2006Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshootersPLOS Biology41079109210.1371/journal.pbio.0040188

137 

Xie, J., Butler, S., Sánchez, G. & Mateos, M. (2014). Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity, 112, 399-408.

J. Xie S. Butler G. Sánchez M. Mateos 2014Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid waspsHeredity112399408

138 

Zchori-Fein, E., Ben-Dov, Y., Portnoy, V. & Katzir, N. (2005). Distribution of the endosymbiont Cardinium hertigii in scale insects (Hemiptera: Coccoidea). In: Proceedings of the Tenth International Symposium on Scale Insect Studies, 19-23, Erkılıc, L.B. & Kaydan, M.B. (Eds.), 101-116. Scientific and Technical Research Council of Turkey, Ankara.

E. Zchori-Fein Y. Ben-Dov V. Portnoy N. Katzir 2005Distribution of the endosymbiont Cardinium hertigii in scale insects (Hemiptera: Coccoidea)Tenth International Symposium on Scale Insect Studies1923 L.B. Erkılıc M.B Kaydan Scientific and Technical Research Council of TurkeyAnkara



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Enlaces refback

  • No hay ningún enlace refback.


Financiado por:

 

Proyecto C-290903

Licencia Creative Commons
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS, Volumen 23, 2020, es una publicación editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Deleg. Coyoacán, C.P. 04510, Ciudad de México, México, a través de la Facultad de Estudios Superiores Zaragoza, Campus I, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, Teléfono: 55.56.23.05.27, http://tip.zaragoza.unam.mx, Correo electrónico revistatip@yahoo.com, Editor responsable: Dra. Martha Asunción Sánchez Rodríguez, Certificado de Reserva de Derechos al Uso Exclusivo del Título No. 04-2014-062612263300-203, ISSN: 2395-8723 ambos otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número Claudia Ahumada Ballesteros, Facultad de Estudios Superiores Zaragoza, Av. Guelatao # 66, Col. Ejército de Oriente, Deleg. Iztapalapa, C.P. 09230, Ciudad de México, México, fecha de la última modificación, 28 de julio de 2020.

Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo de la institución.