Resumen
El proceso de cicatrización es un proceso complejo que involucra varios tipos celulares y eventos moleculares con el objetivo de restaurar la integridad del teijdo. La cicatrización se lleva a cabo en 4 etapas secuenciales conocidas como: hemostasia, inflamación, proliferación y remodelación. Entre ellas la inflamación es una fase que debe aumentar, para cerrar la herida y asegurar una correcta cicatrización, que es regulada por las células del sistema inmunológico que liberan citocinas como: IL-6, IL1β y factores de crecimiento como: factor de necrosis tumoral-α. Una desregulación en las citocinas y factores de crecimiento provocan una inflamación crónica, lo que va a desarrollar una fibrosis. Existen diferentes causas por las que esta última aparece, las quemaduras son uno de los principales accidentes que originan esta patología en un 80%. Esta alteración es consecuencia del desequilibrio en la interacción de diferentes células del tejido cutáneo y del sistema inmunológico durante la curación. En esta revisión se discute el papel de las citocinas y los factores de crecimiento presentes en la inflamación y cómo las quemaduras causan cicatrices hipertróficas.
Citas
Abdo, J. M., Sopko, N. A. & Milner, S. M. (2020). The applied anatomy of human skin: A model for regeneration. Wound Medicine, 28, 100179. DOI: 10.1016/j.wndm.2020.100179
Akchurin, O., Patino, E., Dalal, V., Meza, K., Bhatia, D., Brovender, S., Zhu, Y.-S., Cunningham-Rundles, S., Perelstein, E., Kumar, J., Rivella, S. & Choi, M. E. (2019). Interleukin-6 Contributes to the Development of Anemia in Juvenile CKD. Kidney International Reports, 4(3), 470–483. DOI: 10.1016/j.ekir.2018.12.006
Alzamil, H. (2020). Elevated Serum TNF- α Is Related to Obesity in Type 2 diabetes mellitus and Is Associated with Glycemic Control and Insulin Resistance. Journal of Obesity, 1–5. DOI: 10.1155/2020/5076858
Ball, R. L., Keyloun, J. W., Brummel-Ziedins, K., Orfeo, T., Palmieri, T. L., Johnson, L. S., Moffatt, L. T., Pusateri, A. E. & Shupp, J. W. (2020). Burn-Induced Coagulopathies: a Comprehensive Review. Shock, 54(2), 154–167. DOI: 10.1097/SHK.0000000000001484
Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V. & Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 30(3), 257–262. DOI: 10.1016/j.clindermatol.2011.08.007
Bent, R., Moll, L., Grabbe, S. & Bros, M. (2018). Interleukin-1 Beta—A Friend or Foe in Malignancies? International Journal of Molecular Sciences, 19(8), 2155. DOI: 10.3390/ijms19082155
Boengler K., Hilfikerkleiner, D., Drexler, H., Heusch, G. & Schulz, R. (2008). The myocardial JAK/STAT pathway: From protection to failure. Pharmacology & Therapeutics, 120(2), 172–185. DOI: 10.1016/j.pharmthera.2008.08.002
Brint, E. K., Fitzgerald, K. A., Smith, P., Coyle, A. J., Gutierrez-Ramos, J.-C., Fallon, P. G. & O’Neill, L. A. J. (2002). Characterization of Signaling Pathways Activated by the Interleukin 1 (IL-1) Receptor Homologue T1/ST2. Journal of Biological Chemistry, 277(51), 49205–49211. DOI: 10.1074/jbc.M209685200
Brusselle, G. & Bracke, K. (2014). Targeting Immune Pathways for Therapy in Asthma and Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 11(Supplement 5), S322–S328. DOI: 10.1513/AnnalsATS.201403-118AW
Burhans, M. S., Hagman, D. K., Kuzma, J. N., Schmidt, K. A. & Kratz, M. (2018). Contribution of Adipose Tissue Inflammation to the Development of Type 2 diabetes mellitus. In Comprehensive Physiology (pp. 1–58). Wiley, United States. DOI: 10.1002/cphy.c170040
Canady, J., Arndt, S., Karrer, S. & Bosserhoff, A. K. (2013). Increased KGF Expression Promotes Fibroblast Activation in a Double Paracrine Manner Resulting in Cutaneous Fibrosis. Journal of Investigative Dermatology, 133(3), 647–657. DOI: 10.1038/jid.2012.389
Cato, L. D., Wearn, C. M., Bishop, J. R. B., Stone, M. J., Harrison, P. & Moiemen, N. (2018). Platelet count: A predictor of sepsis and mortality in severe burns. Burns, 44(2), 288–297. DOI: 10.1016/j.burns.2017.08.015
Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. DOI: 10.18632/oncotarget.23208
Cote-Sierra, J., Foucras, G., Guo, L., Chiodetti, L., Young, H. A., Hu-Li, J., Zhu, J. & Paul, W. E. (2004). Interleukin 2 plays a central role in Th2 differentiation. Proceedings of the National Academy of Sciences, 101(11), 3880–3885. DOI: 10.1073/pnas.0400339101
Cumberbatch, M., Dearman, R. J. & Kimber, I. (1996). Constitutive and inducible expression of interleukin-6 by Langerhans cells and lymph node dendritic cells. Immunology, 87(4), 513–518. DOI: 10.1046/j.1365-2567.1996.504577.x
Denton, C. P., Ong, V. H., Xu, S., Chen-Harris, H., Modrusan, Z., Lafyatis, R., Khanna, D., Jahreis, A., Siegel, J. & Sornasse, T. (2018). Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Annals of the Rheumatic Diseases, 77(9), 1362–1371. DOI: 10.1136/annrheumdis-2018-213031
Duell, B. L., Tan, C. K., Carey, A. J., Wu, F., Cripps, A. W. & Ulett, G. C. (2012). Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis: Table I. FEMS Immunology & Medical Microbiology, 64(3), 295–313. DOI: 10.1111/j.1574-695X.2012.00931.x
Dufour, A. M., Alvarez, M., Russo, B. & Chizzolini, C. (2018). Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Frontiers in Immunology, 9, 1-13. DOI: 10.3389/fimmu.2018.01865
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H. & Martín, C. (2020). Pathophysiology of Type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. DOI: 10.3390/ijms21176275
Gao, J., Guo, Z., Zhang, Y., Liu, Y., Xing, F., Wang, J., Luo, X., Kong, Y. & Zhang, G. (2023). Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regenerative Biomaterials, 10, 1-9. DOI: 10.1093/rb/rbac110
Gauglitz, G. G., Korting, H. C., Pavicic, T., Ruzicka, T. & Jeschke, M. G. (2011). Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies. Molecular Medicine, 17(1–2), 113–125. DOI: 10.2119/molmed.2009.00153
González-Villalva, A., de la Peña-Díaz, A., Rojas-Lemus, M., López-Valdez, N., Ustarroz-Cano, M., García-Peláez, I., Bizarro-Nevares, P. & Fortoul, T. I. (2020). Fisiología de la hemostasia y su alteración por la coagulopatía en COVID-19. Revista de La Facultad de Medicina, 63(5), 45–57. DOI: 10.22201/fm.24484865e.2020.63.5.08
Gudkov, A. V. & Komarova, E. A. (2016). p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harbor Perspectives in Medicine, 6(11), a026161. 1-23. DOI: 10.1101/cshperspect.a026161
Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314–321. DOI: 10.1038/nature07039
Han, G. & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Advances in Therapy, 34(3), 599–610. DOI: 10.1007/s12325-017-0478-y
Hao, R., Li, Z., Chen, X. & Ye, W. (2018). Efficacy and possible mechanisms of Botulinum Toxin type A on hypertrophic scarring. Journal of Cosmetic Dermatology, 17(3), 340–346. DOI: 10.1111/jocd.12534
Henderson, J., Ferguson, M. W. J. & Terenghi, G. (2011). The reinnervation and revascularization of wounds is temporarily altered after treatment with interleukin 10. Wound Repair and Regeneration, 19(2), 268–273. DOI: 10.1111/j.1524-475X.2011.00667.x
Hinz, B. (2010). The myofibroblast: Paradigm for a mechanically active cell. Journal of Biomechanics, 43(1), 146–155. DOI: 10.1016/j.jbiomech.2009.09.020
Ishihara, J., Ishihara, A., Fukunaga, K., Sasaki, K., White, M. J. V., Briquez, P. S. & Hubbell, J. A. (2018). Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nature Communications, 9(1), 2163. DOI: 10.1038/s41467-018-04525-w
Jia, Y.-Y., Zhou, J.-Y., Chang, Y., An, F., Li, X.-W., Xu, X.-Y., Sun, X.-L., Xiong, C.-Y. & Wang, J.-L. (2018). Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen. Chinese Medical Journal, 131(17), 2089–2096. DOI: 10.4103/0366-6999.239301
Jiang, L., Dai, Y., Cui, F., Pan, Y., Zhang, H., Xiao, J. & Xiaobing, F. U. (2015). Corrigendum: Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. Spinal Cord, 53(4), 332–332. DOI: 10.1038/sc.2015.25
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1754(1–2), 253–262. DOI: 10.1016/j.bbapap.2005.08.017
Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S. & Masumoto, J. (2019). The role of interleukin-1 in general pathology. Inflammation and Regeneration, 39(1), 12. DOI: 10.1186/s41232-019-0101-5
Kazmi, S., Khan, M. A., Shamma, T., Altuhami, A., Ahmed, H. A., Mohammed Assiri, A. & Broering, D. C. (2022). Targeting Interleukin-10 Restores Graft Microvascular Supply and Airway Epithelium in Rejecting Allografts. International Journal of Molecular Sciences, 23(3), 1269. DOI: 10.3390/ijms23031269
Kern, L., Mittenbühler, M., Vesting, A., Ostermann, A., Wunderlich, C. & Wunderlich, F. (2018). Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers, 11(1), 24. DOI: 10.3390/cancers11010024
Kieran, I., Taylor, C., Bush, J., Rance, M., So, K., Boanas, A., Metcalfe, A., Hobson, R., Goldspink, N., Hutchison, J. & Ferguson, M. (2014). Effects of interleukin-10 on cutaneous wounds and scars in humans of African continental ancestral origin. Wound Repair and Regeneration, 22(3), 326–333. DOI: 10.1111/wrr.12178
Korkmaz, H. I., Flokstra, G., Waasdorp, M., Pijpe, A., Papendorp, S. G., de Jong, E., Rustemeyer, T., Gibbs, S. & van Zuijlen, P. P. M. (2023). The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells, 12(3), 345. DOI: 10.3390/cells12030345
Landén, N. X., Li, D. & Ståhle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences, 73(20), 3861–3885. DOI: 10.1007/s00018-016-2268-0
Lee, E. G., Luckett-Chastain, L. R., Calhoun, K. N., Frempah, B., Bastian, A. & Gallucci, R. M. (2019). Interleukin 6 Function in the Skin and Isolated Keratinocytes Is Modulated by Hyperglycemia. Journal of Immunology Research, 1–9. DOI: 10.1155/2019/5087847
Lee, J., Rodero, M. P., Patel, J., Moi, D., Mazzieri, R. & Khosrotehrani, K. (2018). Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. The FASEB Journal, 32(4), 2086–2094. DOI: 10.1096/fj.201700773R
Lisset, M., Regal, L., Borges, A. A., Omar De Armas García, J., Alvarado, L. M., Antonio, J., Cedeño, V., Cuesta, J. Á. & Sol, D. (2015). Respuesta inflamatoria aguda. Consideraciones bioquímicas y celulares. Revista Finlay, 5(1), 47–62. ISSN 2221-2434
Liu, X., Wang, W., Hu, H., Tang, N., Zhang, C., Liang, W. & Wang, M. (2006). Smad3 Specific Inhibitor, Naringenin, Decreases the Expression of Extracellular Matrix Induced by TGF-β1 in Cultured Rat Hepatic Stellate Cells. Pharmaceutical Research, 23(1), 82–89. DOI: 10.1007/s11095-005-9043-5
Makita, N., Hizukuri, Y., Yamashiro, K., Murakawa, M. & Hayashi, Y. (2015). IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology, 27(3), 131–141. DOI: 10.1093/intimm/dxu090
Manna, P. & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. DOI: 10.1089/met.2015.0095
Medina, J. L., Sebastian, E. A., Fourcaudot, A. B., Dorati, R. & Leung, K. P. (2019). Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses. Inflammation, 42(1), 45–53. DOI: 10.1007/s10753-018-0871-y
Monteleone, M., Stow, J. L. & Schroder, K. (2015). Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine, 74(2), 213–218. DOI: 10.1016/j.cyto.2015.03.022
Moynagh, P. N. (2005). The NF-κB pathway. Journal of Cell Science, 118(20), 4589–4592. DOI: 10.1242/jcs.02579
Mulder, P. P. G., Vlig, M., Fasse, E., Stoop, M. M., Pijpe, A., van Zuijlen, P. P. M., Joosten, I., Boekema, B. K. H. L. & Koenen, H. J. P. M. (2022). Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Frontiers in Immunology, 13, 1-14. DOI: 10.3389/fimmu.2022.1034420
Ng, T. H. S., Britton, G. J., Hill, E. V., Verhagen, J., Burton, B. R. & Wraith, D. C. (2013). Regulation of Adaptive Immunity; The Role of Interleukin-10. Frontiers in Immunology, 4, 1-13. DOI: 10.3389/fimmu.2013.00129
Nguyen, J. K., Austin, E., Huang, A., Mamalis, A. & Jagdeo, J. (2020). The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Archives of Dermatological Research, 312(2), 81–92. DOI: 10.1007/s00403-019-01972-3
Nishikai-Yan Shen, T., Kanazawa, S., Kado, M., Okada, K., Luo, L., Hayashi, A., Mizuno, H. & Tanaka, R. (2017). Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLOS ONE, 12(5), e0178232. DOI: 10.1371/journal.pone.0178232
Oeckinghaus, A., Hayden, M. S. & Ghosh, S. (2011). Crosstalk in NF-κB signaling pathways. Nature Immunology, 12(8), 695–708. DOI: 10.1038/ni.2065
Ogawa, R. (2017). Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. International Journal of Molecular Sciences, 18(3), 606. DOI: 10.3390/ijms18030606
Parameswaran, N. & Patial, S. (2010). Tumor Necrosis Factor-α Signaling in Macrophages. Critical ReviewsTM in Eukaryotic Gene Expression, 20(2), 87–103. DOI: 10.1615/CritRevEukarGeneExpr.v20.i2.10
Park, U., Lee, M. S., Jeon, J., Lee, S., Hwang, M. P., Wang, Y., Yang, H. S. & Kim, K. (2019). Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomaterialia, 90, 179–191. DOI: 10.1016/j.actbio.2019.03.052
Peñaloza, H. F., Noguera, L. P., Riedel, C. A. & Bueno, S. M. (2018). Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Frontiers in Microbiology, 9, 1-8. DOI: 10.3389/fmicb.2018.02047
Perez-Favila, A., Martinez-Fierro, M. L., Rodriguez-Lazalde, J. G., Cid-Baez, M. A., Zamudio-Osuna, M. de J., Martinez-Blanco, Ma. del R., Mollinedo-Montaño, F. E., Rodriguez-Sanchez, I. P., Castañeda-Miranda, R. & Garza-Veloz, I. (2019). Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina, 55(11), 714. DOI: 10.3390/medicina55110714
Prieto-Torres, L., Hernández-Ostiz, S., Pelegrina-Fernández, E. & Conejero del Mazo, C. (2016). FR - El papel de las células madre epidérmicas en el desarrollo del carcinoma basocelular. Actas Dermo-Sifiliográficas, 107(4), 341–342. DOI: 10.1016/j.ad.2015.07.015
Przekora, A. (2020). A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue in vitro? Cells, 9(7), 1622. DOI: 10.3390/cells9071622
Qing, C. (2017). The molecular biology in wound healing & non-healing wound. Chinese Journal of Traumatology, 20(4), 189–193. DOI: 10.1016/j.cjtee.2017.06.001
Rahman, I. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. European Respiratory Journal, 28(1), 219–242. DOI: 10.1183/09031936.06.00053805
Ray, S., Ju, X., Sun, H., Finnerty, C. C., Herndon, D. N. & Brasier, A. R. (2013). The IL-6 Trans-Signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar. Journal of Investigative Dermatology, 133(5), 1212–1220. DOI: 10.1038/jid.2012.499
Sabio, G. & Davis, R. J. (2014). TNF and MAP kinase signalling pathways. Seminars in Immunology, 26(3), 237–245. DOI: 10.1016/j.smim.2014.02.009
Sapudom, J., Wu, X., Chkolnikov, M., Ansorge, M., Anderegg, U. & Pompe, T. (2017). Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices. Biomaterials Science, 5(9), 1858–1867. DOI: 10.1039/C7BM00286F
Sarrazy, V., Billet, F., Micallef, L., Coulomb, B. & Desmoulière, A. (2011). Mechanisms of pathological scarring: Role of myofibroblasts and current developments. Wound Repair and Regeneration, 19(s1). 10-15. DOI: 10.1111/j.1524-475X.2011.00708.x
Schultz, G. S., Chin, G. A., Moldawer, L. & Diegelmann, R. F. (2011). Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. Principles of Wound Healing. Fitridge & Thomson 423-450. Australia: University of Adelaide Press. ISBN: 978-0-9871718-2-5
Septin Mauludiyana, Aryati, A., Yoes Prijatna Dachlan, Y., Iswinarno Doso Saputro, I. & Muhaimin Rifa’i, M. (2021). Immune Response to Burn Injury: Hyperinflammation and Immunosuppression. Indian Journal of Forensic Medicine & Toxicology, 15(3), 4095-4098. DOI: 10.37506/ijfmt.v15i3.15936
Sethi, J. K. & Hotamisligil, G. S. (2021). Metabolic Messengers: tumour necrosis factor. Nature Metabolism, 3(10), 1302–1312. DOI: 10.1038/s42255-021-00470-z
Shi, H.-X., Lin, C., Lin, B.-B., Wang, Z.-G., Zhang, H.-Y., Wu, F.-Z., Cheng, Y., Xiang, L.-J., Guo, D.-J., Luo, X., Zhang, G.-Y., Fu, X.-B., Bellusci, S., Li, X.-K. & Xiao, J. (2013). The Anti-Scar Effects of Basic Fibroblast Growth Factor on the Wound Repair in vitro and in vivo. PLoS ONE, 8(4), e59966. DOI: 10.1371/journal.pone.0059966
Shieh, J., Tsai, Y., Chi, J. C. & Wu, W. (2019). TGFβ mediates collagen production in human CRSsNP nasal mucosa-derived fibroblasts through Smad2/3-dependent pathway and CTGF induction and secretion. Journal of Cellular Physiology, 234(7), 10489–10499. DOI: 10.1002/jcp.27718
Sindhu, S., Thomas, R., Shihab, P., Sriraman, D., Behbehani, K. & Ahmad, R. (2015). Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLOS ONE, 10(7), e0133494. DOI: 10.1371/journal.pone.0133494
Strudwick, X. L. & Cowin, A. J. (2018). The Role of the Inflammatory Response in Burn Injury. In Hot Topics in Burn Injuries. InTech, 234(7), 37-57. DOI: 10.5772/intechopen.71330
Sun, B. K., Siprashvili, Z. & Khavari, P. A. (2014). Advances in skin grafting and treatment of cutaneous wounds. Science, 346(6212), 941–945. DOI: 10.1126/science.1253836
Sun, Z.-L., Feng, Y., Zou, M.-L., Zhao, B.-H., Liu, S.-Y., Du, Y., Yu, S., Yang, M.-L., Wu, J.-J., Yuan, Z.-D., Lv, G.-Z., Zhang, J.-R. & Yuan, F.-L. (2020). Emerging Role of IL-10 in Hypertrophic Scars. Frontiers in Medicine, 7. 1-8. DOI: 10.3389/fmed.2020.00438
Sziksz, E., Pap, D., Lippai, R., Béres, N. J., Fekete, A., Szabó, A. J. & Vannay, Á. (2015). Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators of Inflammation, 1–15. DOI: 10.1155/2015/764641
Takeda, K., Kaisho, T. & Akira, S. (2003). Toll-Like Receptors. Annual Review of Immunology, 21(1), 335–376. DOI: 10.1146/annurev.immunol.21.120601.141126
Twigg, S. (2008). Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vascular Health and Risk Management, Volume 4, 575–596. DOI: 10.2147/VHRM.S1991
Wang, H., Chen, Z., Li, X.-J., Ma, L. & Tang, Y.-L. (2015). Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. European Journal of Pharmacology, 751, 42–49. DOI: 10.1016/j.ejphar.2015.01.040
Watterson, K. R., Lanning, D. A., Diegelmann, R. F. & Spiegel, S. (2007). Regulation of fibroblast functions by lysophospholipid mediators: Potential roles in wound healing. Wound Repair and Regeneration, 15(5), 607–616. DOI: 10.1111/j.1524-475X.2007.00292.x
Weissenbach, M., Clahsen, T., Weber, C., Spitzer, D., Wirth, D., Vestweber, D., Heinrich, P. C. & Schaper, F. (2004). Interleukin-6 is a direct mediator of T cell migration. European Journal of Immunology, 34(10), 2895–2906. DOI: 10.1002/eji.200425237
Werner, S. & Grose, R. (2003). Regulation of Wound Healing by Growth Factors and Cytokines. Physiological Reviews, 83(3), 835–870. DOI: 10.1152/physrev.2003.83.3.835
Wright, H. L., Cross, A. L., Edwards, S. W. & Moots, R. J. (2014). Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology, 53(7), 1321–1331. DOI: 10.1093/rheumatology/keu035
Zhang, J.-M. & An, J. (2007). Cytokines, Inflammation, and Pain. International Anesthesiology Clinics, 45(2), 27–37. DOI: 10.1097/AIA.0b013e318034194e
Zhu, B.-M., Ishida, Y., Robinson, G. W., Pacher-Zavisin, M., Yoshimura, A., Murphy, P. M. & Hennighausen, L. (2008). SOCS3 Negatively Regulates the gp130–STAT3 Pathway in Mouse Skin Wound Healing. Journal of Investigative Dermatology, 128(7), 1821–1829. DOI: 10.1038/sj.jid.5701224
Zhu, Z., Ding, J. & Tredget, E. E. (2016). The molecular basis of hypertrophic scars. Burns & Trauma, 4, 1-12. DOI: 10.1186/s41038-015-0026-4
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.

