ISSN: 1405-888X ISSN-e: 2395-8723
Role of the inflammation response in the healing process
PDF (Español (España))

Keywords

inflammation
hypertrophic scar
fibrosis
burns
diabetes

How to Cite

González-García, F., Campechano-Hernández, Y., González-Muñiz, Y. A., & Cabrera-Wrooman, A. (2025). Role of the inflammation response in the healing process. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.768

Abstract

The wound healing process is a complex process that involves various cell types and molecular events with the goal of restoring tissue integrity. Healing occurs in four sequential stages known as: hemostasis, inflammation, proliferation, and remodeling. Among these, inflammation is a phase that must be upregulated to close the wound and ensure proper healing. This phase is regulated by immune system cells that release cytokines such as IL-6, IL-1β, and growth factors such as tumor necrosis factor-alpha (TNF-α). Dysregulation of cytokines and growth factors leads to chronic inflammation, which in turn promotes fibrosis and results in hypertrophic scar formation. There are several causes of chronic scarring, with burns being one of the main injuries associated with this condition. Around 80% of burn injuries result in hypertrophic scarring, as a consequence of the imbalance in the interaction between various skin tissue cells and the immune system during healing. This review discusses the role of cytokines and growth factors involved in inflammation and how burns lead to hypertrophic scarring.

https://doi.org/10.22201/fesz.23958723e.2025.768
PDF (Español (España))

References

Abdo, J. M., Sopko, N. A. & Milner, S. M. (2020). The applied anatomy of human skin: A model for regeneration. Wound Medicine, 28, 100179. DOI: 10.1016/j.wndm.2020.100179

Akchurin, O., Patino, E., Dalal, V., Meza, K., Bhatia, D., Brovender, S., Zhu, Y.-S., Cunningham-Rundles, S., Perelstein, E., Kumar, J., Rivella, S. & Choi, M. E. (2019). Interleukin-6 Contributes to the Development of Anemia in Juvenile CKD. Kidney International Reports, 4(3), 470–483. DOI: 10.1016/j.ekir.2018.12.006

Alzamil, H. (2020). Elevated Serum TNF- α Is Related to Obesity in Type 2 diabetes mellitus and Is Associated with Glycemic Control and Insulin Resistance. Journal of Obesity, 1–5. DOI: 10.1155/2020/5076858

Ball, R. L., Keyloun, J. W., Brummel-Ziedins, K., Orfeo, T., Palmieri, T. L., Johnson, L. S., Moffatt, L. T., Pusateri, A. E. & Shupp, J. W. (2020). Burn-Induced Coagulopathies: a Comprehensive Review. Shock, 54(2), 154–167. DOI: 10.1097/SHK.0000000000001484

Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V. & Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in Dermatology, 30(3), 257–262. DOI: 10.1016/j.clindermatol.2011.08.007

Bent, R., Moll, L., Grabbe, S. & Bros, M. (2018). Interleukin-1 Beta—A Friend or Foe in Malignancies? International Journal of Molecular Sciences, 19(8), 2155. DOI: 10.3390/ijms19082155

Boengler K., Hilfikerkleiner, D., Drexler, H., Heusch, G. & Schulz, R. (2008). The myocardial JAK/STAT pathway: From protection to failure. Pharmacology & Therapeutics, 120(2), 172–185. DOI: 10.1016/j.pharmthera.2008.08.002

Brint, E. K., Fitzgerald, K. A., Smith, P., Coyle, A. J., Gutierrez-Ramos, J.-C., Fallon, P. G. & O’Neill, L. A. J. (2002). Characterization of Signaling Pathways Activated by the Interleukin 1 (IL-1) Receptor Homologue T1/ST2. Journal of Biological Chemistry, 277(51), 49205–49211. DOI: 10.1074/jbc.M209685200

Brusselle, G. & Bracke, K. (2014). Targeting Immune Pathways for Therapy in Asthma and Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 11(Supplement 5), S322–S328. DOI: 10.1513/AnnalsATS.201403-118AW

Burhans, M. S., Hagman, D. K., Kuzma, J. N., Schmidt, K. A. & Kratz, M. (2018). Contribution of Adipose Tissue Inflammation to the Development of Type 2 diabetes mellitus. In Comprehensive Physiology (pp. 1–58). Wiley, United States. DOI: 10.1002/cphy.c170040

Canady, J., Arndt, S., Karrer, S. & Bosserhoff, A. K. (2013). Increased KGF Expression Promotes Fibroblast Activation in a Double Paracrine Manner Resulting in Cutaneous Fibrosis. Journal of Investigative Dermatology, 133(3), 647–657. DOI: 10.1038/jid.2012.389

Cato, L. D., Wearn, C. M., Bishop, J. R. B., Stone, M. J., Harrison, P. & Moiemen, N. (2018). Platelet count: A predictor of sepsis and mortality in severe burns. Burns, 44(2), 288–297. DOI: 10.1016/j.burns.2017.08.015

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. DOI: 10.18632/oncotarget.23208

Cote-Sierra, J., Foucras, G., Guo, L., Chiodetti, L., Young, H. A., Hu-Li, J., Zhu, J. & Paul, W. E. (2004). Interleukin 2 plays a central role in Th2 differentiation. Proceedings of the National Academy of Sciences, 101(11), 3880–3885. DOI: 10.1073/pnas.0400339101

Cumberbatch, M., Dearman, R. J. & Kimber, I. (1996). Constitutive and inducible expression of interleukin-6 by Langerhans cells and lymph node dendritic cells. Immunology, 87(4), 513–518. DOI: 10.1046/j.1365-2567.1996.504577.x

Denton, C. P., Ong, V. H., Xu, S., Chen-Harris, H., Modrusan, Z., Lafyatis, R., Khanna, D., Jahreis, A., Siegel, J. & Sornasse, T. (2018). Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Annals of the Rheumatic Diseases, 77(9), 1362–1371. DOI: 10.1136/annrheumdis-2018-213031

Duell, B. L., Tan, C. K., Carey, A. J., Wu, F., Cripps, A. W. & Ulett, G. C. (2012). Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis: Table I. FEMS Immunology & Medical Microbiology, 64(3), 295–313. DOI: 10.1111/j.1574-695X.2012.00931.x

Dufour, A. M., Alvarez, M., Russo, B. & Chizzolini, C. (2018). Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Frontiers in Immunology, 9, 1-13. DOI: 10.3389/fimmu.2018.01865

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H. & Martín, C. (2020). Pathophysiology of Type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. DOI: 10.3390/ijms21176275

Gao, J., Guo, Z., Zhang, Y., Liu, Y., Xing, F., Wang, J., Luo, X., Kong, Y. & Zhang, G. (2023). Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regenerative Biomaterials, 10, 1-9. DOI: 10.1093/rb/rbac110

Gauglitz, G. G., Korting, H. C., Pavicic, T., Ruzicka, T. & Jeschke, M. G. (2011). Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies. Molecular Medicine, 17(1–2), 113–125. DOI: 10.2119/molmed.2009.00153

González-Villalva, A., de la Peña-Díaz, A., Rojas-Lemus, M., López-Valdez, N., Ustarroz-Cano, M., García-Peláez, I., Bizarro-Nevares, P. & Fortoul, T. I. (2020). Fisiología de la hemostasia y su alteración por la coagulopatía en COVID-19. Revista de La Facultad de Medicina, 63(5), 45–57. DOI: 10.22201/fm.24484865e.2020.63.5.08

Gudkov, A. V. & Komarova, E. A. (2016). p53 and the Carcinogenicity of Chronic Inflammation. Cold Spring Harbor Perspectives in Medicine, 6(11), a026161. 1-23. DOI: 10.1101/cshperspect.a026161

Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453(7193), 314–321. DOI: 10.1038/nature07039

Han, G. & Ceilley, R. (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Advances in Therapy, 34(3), 599–610. DOI: 10.1007/s12325-017-0478-y

Hao, R., Li, Z., Chen, X. & Ye, W. (2018). Efficacy and possible mechanisms of Botulinum Toxin type A on hypertrophic scarring. Journal of Cosmetic Dermatology, 17(3), 340–346. DOI: 10.1111/jocd.12534

Henderson, J., Ferguson, M. W. J. & Terenghi, G. (2011). The reinnervation and revascularization of wounds is temporarily altered after treatment with interleukin 10. Wound Repair and Regeneration, 19(2), 268–273. DOI: 10.1111/j.1524-475X.2011.00667.x

Hinz, B. (2010). The myofibroblast: Paradigm for a mechanically active cell. Journal of Biomechanics, 43(1), 146–155. DOI: 10.1016/j.jbiomech.2009.09.020

Ishihara, J., Ishihara, A., Fukunaga, K., Sasaki, K., White, M. J. V., Briquez, P. S. & Hubbell, J. A. (2018). Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nature Communications, 9(1), 2163. DOI: 10.1038/s41467-018-04525-w

Jia, Y.-Y., Zhou, J.-Y., Chang, Y., An, F., Li, X.-W., Xu, X.-Y., Sun, X.-L., Xiong, C.-Y. & Wang, J.-L. (2018). Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen. Chinese Medical Journal, 131(17), 2089–2096. DOI: 10.4103/0366-6999.239301

Jiang, L., Dai, Y., Cui, F., Pan, Y., Zhang, H., Xiao, J. & Xiaobing, F. U. (2015). Corrigendum: Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. Spinal Cord, 53(4), 332–332. DOI: 10.1038/sc.2015.25

Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1754(1–2), 253–262. DOI: 10.1016/j.bbapap.2005.08.017

Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S. & Masumoto, J. (2019). The role of interleukin-1 in general pathology. Inflammation and Regeneration, 39(1), 12. DOI: 10.1186/s41232-019-0101-5

Kazmi, S., Khan, M. A., Shamma, T., Altuhami, A., Ahmed, H. A., Mohammed Assiri, A. & Broering, D. C. (2022). Targeting Interleukin-10 Restores Graft Microvascular Supply and Airway Epithelium in Rejecting Allografts. International Journal of Molecular Sciences, 23(3), 1269. DOI: 10.3390/ijms23031269

Kern, L., Mittenbühler, M., Vesting, A., Ostermann, A., Wunderlich, C. & Wunderlich, F. (2018). Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation—Driven Liver and Colorectal Cancers. Cancers, 11(1), 24. DOI: 10.3390/cancers11010024

Kieran, I., Taylor, C., Bush, J., Rance, M., So, K., Boanas, A., Metcalfe, A., Hobson, R., Goldspink, N., Hutchison, J. & Ferguson, M. (2014). Effects of interleukin-10 on cutaneous wounds and scars in humans of African continental ancestral origin. Wound Repair and Regeneration, 22(3), 326–333. DOI: 10.1111/wrr.12178

Korkmaz, H. I., Flokstra, G., Waasdorp, M., Pijpe, A., Papendorp, S. G., de Jong, E., Rustemeyer, T., Gibbs, S. & van Zuijlen, P. P. M. (2023). The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells, 12(3), 345. DOI: 10.3390/cells12030345

Landén, N. X., Li, D. & Ståhle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences, 73(20), 3861–3885. DOI: 10.1007/s00018-016-2268-0

Lee, E. G., Luckett-Chastain, L. R., Calhoun, K. N., Frempah, B., Bastian, A. & Gallucci, R. M. (2019). Interleukin 6 Function in the Skin and Isolated Keratinocytes Is Modulated by Hyperglycemia. Journal of Immunology Research, 1–9. DOI: 10.1155/2019/5087847

Lee, J., Rodero, M. P., Patel, J., Moi, D., Mazzieri, R. & Khosrotehrani, K. (2018). Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. The FASEB Journal, 32(4), 2086–2094. DOI: 10.1096/fj.201700773R

Lisset, M., Regal, L., Borges, A. A., Omar De Armas García, J., Alvarado, L. M., Antonio, J., Cedeño, V., Cuesta, J. Á. & Sol, D. (2015). Respuesta inflamatoria aguda. Consideraciones bioquímicas y celulares. Revista Finlay, 5(1), 47–62. ISSN 2221-2434

Liu, X., Wang, W., Hu, H., Tang, N., Zhang, C., Liang, W. & Wang, M. (2006). Smad3 Specific Inhibitor, Naringenin, Decreases the Expression of Extracellular Matrix Induced by TGF-β1 in Cultured Rat Hepatic Stellate Cells. Pharmaceutical Research, 23(1), 82–89. DOI: 10.1007/s11095-005-9043-5

Makita, N., Hizukuri, Y., Yamashiro, K., Murakawa, M. & Hayashi, Y. (2015). IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. International Immunology, 27(3), 131–141. DOI: 10.1093/intimm/dxu090

Manna, P. & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. DOI: 10.1089/met.2015.0095

Medina, J. L., Sebastian, E. A., Fourcaudot, A. B., Dorati, R. & Leung, K. P. (2019). Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses. Inflammation, 42(1), 45–53. DOI: 10.1007/s10753-018-0871-y

Monteleone, M., Stow, J. L. & Schroder, K. (2015). Mechanisms of unconventional secretion of IL-1 family cytokines. Cytokine, 74(2), 213–218. DOI: 10.1016/j.cyto.2015.03.022

Moynagh, P. N. (2005). The NF-κB pathway. Journal of Cell Science, 118(20), 4589–4592. DOI: 10.1242/jcs.02579

Mulder, P. P. G., Vlig, M., Fasse, E., Stoop, M. M., Pijpe, A., van Zuijlen, P. P. M., Joosten, I., Boekema, B. K. H. L. & Koenen, H. J. P. M. (2022). Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Frontiers in Immunology, 13, 1-14. DOI: 10.3389/fimmu.2022.1034420

Ng, T. H. S., Britton, G. J., Hill, E. V., Verhagen, J., Burton, B. R. & Wraith, D. C. (2013). Regulation of Adaptive Immunity; The Role of Interleukin-10. Frontiers in Immunology, 4, 1-13. DOI: 10.3389/fimmu.2013.00129

Nguyen, J. K., Austin, E., Huang, A., Mamalis, A. & Jagdeo, J. (2020). The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets. Archives of Dermatological Research, 312(2), 81–92. DOI: 10.1007/s00403-019-01972-3

Nishikai-Yan Shen, T., Kanazawa, S., Kado, M., Okada, K., Luo, L., Hayashi, A., Mizuno, H. & Tanaka, R. (2017). Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLOS ONE, 12(5), e0178232. DOI: 10.1371/journal.pone.0178232

Oeckinghaus, A., Hayden, M. S. & Ghosh, S. (2011). Crosstalk in NF-κB signaling pathways. Nature Immunology, 12(8), 695–708. DOI: 10.1038/ni.2065

Ogawa, R. (2017). Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. International Journal of Molecular Sciences, 18(3), 606. DOI: 10.3390/ijms18030606

Parameswaran, N. & Patial, S. (2010). Tumor Necrosis Factor-α Signaling in Macrophages. Critical ReviewsTM in Eukaryotic Gene Expression, 20(2), 87–103. DOI: 10.1615/CritRevEukarGeneExpr.v20.i2.10

Park, U., Lee, M. S., Jeon, J., Lee, S., Hwang, M. P., Wang, Y., Yang, H. S. & Kim, K. (2019). Coacervate-mediated exogenous growth factor delivery for scarless skin regeneration. Acta Biomaterialia, 90, 179–191. DOI: 10.1016/j.actbio.2019.03.052

Peñaloza, H. F., Noguera, L. P., Riedel, C. A. & Bueno, S. M. (2018). Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Frontiers in Microbiology, 9, 1-8. DOI: 10.3389/fmicb.2018.02047

Perez-Favila, A., Martinez-Fierro, M. L., Rodriguez-Lazalde, J. G., Cid-Baez, M. A., Zamudio-Osuna, M. de J., Martinez-Blanco, Ma. del R., Mollinedo-Montaño, F. E., Rodriguez-Sanchez, I. P., Castañeda-Miranda, R. & Garza-Veloz, I. (2019). Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina, 55(11), 714. DOI: 10.3390/medicina55110714

Prieto-Torres, L., Hernández-Ostiz, S., Pelegrina-Fernández, E. & Conejero del Mazo, C. (2016). FR - El papel de las células madre epidérmicas en el desarrollo del carcinoma basocelular. Actas Dermo-Sifiliográficas, 107(4), 341–342. DOI: 10.1016/j.ad.2015.07.015

Przekora, A. (2020). A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue in vitro? Cells, 9(7), 1622. DOI: 10.3390/cells9071622

Qing, C. (2017). The molecular biology in wound healing & non-healing wound. Chinese Journal of Traumatology, 20(4), 189–193. DOI: 10.1016/j.cjtee.2017.06.001

Rahman, I. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. European Respiratory Journal, 28(1), 219–242. DOI: 10.1183/09031936.06.00053805

Ray, S., Ju, X., Sun, H., Finnerty, C. C., Herndon, D. N. & Brasier, A. R. (2013). The IL-6 Trans-Signaling-STAT3 Pathway Mediates ECM and Cellular Proliferation in Fibroblasts from Hypertrophic Scar. Journal of Investigative Dermatology, 133(5), 1212–1220. DOI: 10.1038/jid.2012.499

Sabio, G. & Davis, R. J. (2014). TNF and MAP kinase signalling pathways. Seminars in Immunology, 26(3), 237–245. DOI: 10.1016/j.smim.2014.02.009

Sapudom, J., Wu, X., Chkolnikov, M., Ansorge, M., Anderegg, U. & Pompe, T. (2017). Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices. Biomaterials Science, 5(9), 1858–1867. DOI: 10.1039/C7BM00286F

Sarrazy, V., Billet, F., Micallef, L., Coulomb, B. & Desmoulière, A. (2011). Mechanisms of pathological scarring: Role of myofibroblasts and current developments. Wound Repair and Regeneration, 19(s1). 10-15. DOI: 10.1111/j.1524-475X.2011.00708.x

Schultz, G. S., Chin, G. A., Moldawer, L. & Diegelmann, R. F. (2011). Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. Principles of Wound Healing. Fitridge & Thomson 423-450. Australia: University of Adelaide Press. ISBN: 978-0-9871718-2-5

Septin Mauludiyana, Aryati, A., Yoes Prijatna Dachlan, Y., Iswinarno Doso Saputro, I. & Muhaimin Rifa’i, M. (2021). Immune Response to Burn Injury: Hyperinflammation and Immunosuppression. Indian Journal of Forensic Medicine & Toxicology, 15(3), 4095-4098. DOI: 10.37506/ijfmt.v15i3.15936

Sethi, J. K. & Hotamisligil, G. S. (2021). Metabolic Messengers: tumour necrosis factor. Nature Metabolism, 3(10), 1302–1312. DOI: 10.1038/s42255-021-00470-z

Shi, H.-X., Lin, C., Lin, B.-B., Wang, Z.-G., Zhang, H.-Y., Wu, F.-Z., Cheng, Y., Xiang, L.-J., Guo, D.-J., Luo, X., Zhang, G.-Y., Fu, X.-B., Bellusci, S., Li, X.-K. & Xiao, J. (2013). The Anti-Scar Effects of Basic Fibroblast Growth Factor on the Wound Repair in vitro and in vivo. PLoS ONE, 8(4), e59966. DOI: 10.1371/journal.pone.0059966

Shieh, J., Tsai, Y., Chi, J. C. & Wu, W. (2019). TGFβ mediates collagen production in human CRSsNP nasal mucosa-derived fibroblasts through Smad2/3-dependent pathway and CTGF induction and secretion. Journal of Cellular Physiology, 234(7), 10489–10499. DOI: 10.1002/jcp.27718

Sindhu, S., Thomas, R., Shihab, P., Sriraman, D., Behbehani, K. & Ahmad, R. (2015). Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLOS ONE, 10(7), e0133494. DOI: 10.1371/journal.pone.0133494

Strudwick, X. L. & Cowin, A. J. (2018). The Role of the Inflammatory Response in Burn Injury. In Hot Topics in Burn Injuries. InTech, 234(7), 37-57. DOI: 10.5772/intechopen.71330

Sun, B. K., Siprashvili, Z. & Khavari, P. A. (2014). Advances in skin grafting and treatment of cutaneous wounds. Science, 346(6212), 941–945. DOI: 10.1126/science.1253836

Sun, Z.-L., Feng, Y., Zou, M.-L., Zhao, B.-H., Liu, S.-Y., Du, Y., Yu, S., Yang, M.-L., Wu, J.-J., Yuan, Z.-D., Lv, G.-Z., Zhang, J.-R. & Yuan, F.-L. (2020). Emerging Role of IL-10 in Hypertrophic Scars. Frontiers in Medicine, 7. 1-8. DOI: 10.3389/fmed.2020.00438

Sziksz, E., Pap, D., Lippai, R., Béres, N. J., Fekete, A., Szabó, A. J. & Vannay, Á. (2015). Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators of Inflammation, 1–15. DOI: 10.1155/2015/764641

Takeda, K., Kaisho, T. & Akira, S. (2003). Toll-Like Receptors. Annual Review of Immunology, 21(1), 335–376. DOI: 10.1146/annurev.immunol.21.120601.141126

Twigg, S. (2008). Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vascular Health and Risk Management, Volume 4, 575–596. DOI: 10.2147/VHRM.S1991

Wang, H., Chen, Z., Li, X.-J., Ma, L. & Tang, Y.-L. (2015). Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. European Journal of Pharmacology, 751, 42–49. DOI: 10.1016/j.ejphar.2015.01.040

Watterson, K. R., Lanning, D. A., Diegelmann, R. F. & Spiegel, S. (2007). Regulation of fibroblast functions by lysophospholipid mediators: Potential roles in wound healing. Wound Repair and Regeneration, 15(5), 607–616. DOI: 10.1111/j.1524-475X.2007.00292.x

Weissenbach, M., Clahsen, T., Weber, C., Spitzer, D., Wirth, D., Vestweber, D., Heinrich, P. C. & Schaper, F. (2004). Interleukin-6 is a direct mediator of T cell migration. European Journal of Immunology, 34(10), 2895–2906. DOI: 10.1002/eji.200425237

Werner, S. & Grose, R. (2003). Regulation of Wound Healing by Growth Factors and Cytokines. Physiological Reviews, 83(3), 835–870. DOI: 10.1152/physrev.2003.83.3.835

Wright, H. L., Cross, A. L., Edwards, S. W. & Moots, R. J. (2014). Effects of IL-6 and IL-6 blockade on neutrophil function in vitro and in vivo. Rheumatology, 53(7), 1321–1331. DOI: 10.1093/rheumatology/keu035

Zhang, J.-M. & An, J. (2007). Cytokines, Inflammation, and Pain. International Anesthesiology Clinics, 45(2), 27–37. DOI: 10.1097/AIA.0b013e318034194e

Zhu, B.-M., Ishida, Y., Robinson, G. W., Pacher-Zavisin, M., Yoshimura, A., Murphy, P. M. & Hennighausen, L. (2008). SOCS3 Negatively Regulates the gp130–STAT3 Pathway in Mouse Skin Wound Healing. Journal of Investigative Dermatology, 128(7), 1821–1829. DOI: 10.1038/sj.jid.5701224

Zhu, Z., Ding, J. & Tredget, E. E. (2016). The molecular basis of hypertrophic scars. Burns & Trauma, 4, 1-12. DOI: 10.1186/s41038-015-0026-4

Creative Commons License

TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

Downloads

Download data is not yet available.