ISSN: 1405-888X ISSN-e: 2395-8723
An overview of yeast as a biotechnological model
Nombre científico: Latrodectus mactans. Nombre común: "viuda negra”. Nombre del fotógrafo: pendiente, por confirmar.
PDF (Español (España))

Keywords

bioaccumulation
biocontrol
carotenoids
lipids
probiotics

How to Cite

Reyes-Rosario, D., López-Hernández, G. G., Pardo, J. P., Guerra-Sánchez, G., Olicón-Hernández, D. R., Uribe-Ramírez, D., & Romero-Aguilar, L. (2025). An overview of yeast as a biotechnological model. TIP Revista Especializada En Ciencias Químico-Biológicas, 28. https://doi.org/10.22201/fesz.23958723e.2025.752

Abstract

Yeasts are a group of organisms that have been used for many years to produce beverages and fermented foods. Nowadays, it is known that yeasts can produce high-value compounds such as carotenoids, lipids, biosurfactants, acetic acid, and ethanol. Furthermore, yeasts can serve as a model organism for producing recombinant drugs, to remove contaminants from water, and as potential probiotic organisms. This review aims to elucidate the diverse biotechnological applications of yeasts across various industrial sectors. We begin by describing the role of yeasts as agents of bioremediation and biocontrol, highlighting the principal processes of biotransformation, metabolite production, and bioaccumulation that enable yeasts to be a valuable model for biotechnology. Subsequently, we explore the biosynthetic pathways of lipid and carotenoid synthesis as well as the genetic modifications to improve these metabolic processes. Finally, the review addresses the probiotic potential of certain yeast species. 

https://doi.org/10.22201/fesz.23958723e.2025.752
PDF (Español (España))

References

Abid, R., Waseem, H., Ali, J., Ghazanfar, S., Muhammad Ali, G., Elasbali, A. M. & Alharethi, S. H. (2022). Probiotic Yeast Saccharomyces: Back to Nature to Improve Human Health. Journal of Fungi, 8(5), 444. https://doi.org/10.3390/jof8050444

Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P. & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219-1227. https://doi.org/10.1007/s00253-011-3200-z

Aguilar, L. R., Pardo, J. P., Lomelí, M. M., Bocardo, O. I. L., Juárez Oropeza, M. A. & Guerra Sánchez, G. (2017). Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Archives of Microbiology, 199(8), 1195-1209. https://doi.org/10.1007/s00203-017-1388-8

Aksu, Z. & Eren, A. T. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry, 40(9), 2985-2991. https://doi.org/10.1016/j.procbio.2005.01.011

Aloui, H., Licciardello, F., Khwaldia, K., Hamdi, M. & Restuccia, C. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. International Journal of Food Microbiology, 200, 22-30. https://doi.org/10.1016/j.ijfoodmicro.2015.01.015

Angeles de Paz, G., Martínez-Gutierrez, H., Ramírez-Granillo, A., López-Villegas, E. O., Medina-Canales, M. G. & Rodríguez-Tovar, A. V. (2023). Rhodotorula mucilaginosa YR29 is able to accumulate Pb2+ in vacuoles: A yeast with bioremediation potential. World Journal of Microbiology & Biotechnology, 39(9), 238. https://doi.org/10.1007/s11274-023-03675-4

Bahafid, W., Joutey, N. T., Asri, M., Sayel, H., Tirry, N. & Ghachtouli, N. E. (2017). Yeast Biomass: An Alternative for Bioremediation of Heavy Metals. En Yeast—Industrial Applications. IntechOpen. https://doi.org/10.5772/intechopen.70559

Bandhu, S., Srivastava, A., Ghosh, D. & Chaudhuri, T. K. (2020). Yeast Single Cell Oils from Bioresources: Current Developments in Production and Applications. Current Sustainable/Renewable Energy Reports, 7(4), 109-120. https://doi.org/10.1007/s40518-020-00160-6

Battaglia, M., Thomason, W., Fike, J. H., Evanylo, G. K., von Cossel, M., Babur, E., Iqbal, Y. & Diatta, A. A. (2021). The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: A review. GCB Bioenergy, 13(1), 45-57. https://doi.org/10.1111/gcbb.12774

Boulton, C. A. & Ratledge, C. (1981). Correlation of Lipid Accumulation in Yeasts with Possession of ATP: Citrate Lyase. Microbiology, 127(1), 169-176. https://doi.org/10.1099/00221287-127-1-169

Buts, J.-P. & Keyser, N. D. (2010). Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scandinavian Journal of Gastroenterology, 45(2), 175-185. https://doi.org/10.3109/00365520903453141

Buzzini, P., Turchetti, B. & Yurkov, A. (2018). Extremophilic yeasts: The toughest yeasts around? Yeast, 35(8), 487-497. https://doi.org/10.1002/yea.3314

Caporusso, A., Capece, A. & De Bari, I. (2021). Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation, 7(2), 50. https://doi.org/10.3390/fermentation7020050

Castagliuolo, I., Riegler, M. F., Valenick, L., LaMont, J. T. & Pothoulakis, C. (1999). Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infection and Immunity, 67(1), 302-307. https://doi.org/10.1128/IAI.67.1.302-307.1999

Chen, X. Z., Peng, J. B., Cohen, A., Nelson, H., Nelson, N. & Hediger, M. A. (1999). Yeast SMF1 mediates H(+)-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem., 49(274), 35089-94. doi:10.1074/jbc.274.49.35089. PMID: 10574989.

Czerucka, D., Piche, T. & Rampal, P. (2007). Review article: Yeast as probiotics -- Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 26(6), 767-778. https://doi.org/10.1111/j.1365-2036.2007.03442.x

De Oliveira, V. H., Ullah, I., Dunwell, J. M. & Tibbett, M. (2020). Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicology and Environmental Safety, 202, 110917. https://doi.org/10.1016/j.ecoenv.2020.110917

Di Fidio, N., Minonne, F., Antonetti, C. & Raspolli Galletti, A. M. (2021). Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes. Catalysts, 11(11), 1219. Article 11. https://doi.org/10.3390/catal11111291

Duarte, S. H., de Andrade, C. C. P., Ghiselli, G. & Maugeri, F. (2013). Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresource Technology, 138, 377-381. https://doi.org/10.1016/j.biortech.2013.04.004

Fadda, M. E., Mossa, V., Deplano, M., Pisano, M. B. & Cosentino, S. (2017). In vitro screening of Kluyveromyces strains isolated from Fiore Sardo cheese for potential use as probiotics. LWT, 75, 100-106. https://doi.org/10.1016/j.lwt.2016.08.020

Fakas, S. (2016). Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Engineering in Life Sciences, 17(3), 292-302. https://doi.org/10.1002/elsc.201600040

Fernández-Pacheco, P., Ramos Monge, I. M., Fernández-González, M., Poveda Colado, J. M. & Arévalo-Villena, M. (2021). Safety Evaluation of Yeasts with Probiotic Potential. Frontiers in Nutrition, 8, 659328. https://doi.org/10.3389/fnut.2021.659328

Fernández-Pacheco Rodríguez, P., Arévalo-Villena, M., Zaparoli Rosa, I. & Briones Pérez, A. (2018). Selection of potential non-Sacharomyces probiotic yeasts from food origin by a step-by-step approach. Food Research International, 112, 143-151. https://doi.org/10.1016/j.foodres.2018.06.008

Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B. & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154. https://doi.org/10.1007/s11274-019-2728-4

Gaboardi, G., Gil de los Santos, D., Mendes, L., Centeno, L., Meireles, T., Vargas, S., Griep, E., de Castro Jorge Silva, A., Moreira, Â. N. & Conceição, F. R. (2018). Bioremediation and biomass production from the cultivation of probiotic Saccharomyces boulardii in parboiled rice effluent. Journal of Environmental Management, 226, 180-186. https://doi.org/10.1016/j.jenvman.2018.08.027

Gálvez-López, D., Chávez-Meléndez, B., Vázquez-Ovando, A. & Rosas-Quijano, R. (2018). The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica. Brazilian Journal of Microbiology, 50(1), 23-31. https://doi.org/10.1007/s42770-018-0004-7

Geva, P., Kahta, R., Nakonechny, F., Aronov, S. & Nisnevitch, M. (2016). Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains. Environmental Science and Pollution Research, 23(19), 19613-19625. https://doi.org/10.1007/s11356-016-7157-4

Gil-Rodríguez, A. M., Carrascosa, A. V. & Requena, T. (2015). Yeasts in foods and beverages: in vitro characterisation of probiotic traits. LWT - Food Science and Technology, 64(2), 1156-1162. https://doi.org/10.1016/j.lwt.2015.07.042

Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P. & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169-177. https://doi.org/10.1016/j.fm.2016.09.016

Hashem, M., Alamri, S. A., Al-Zomyh, S. S. A. A. & Alrumman, S. A. (2018). Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicology and Environmental Safety, 151, 28-34. https://doi.org/10.1016/j.ecoenv.2017.12.064

Hatoum, R., Labrie, S. & Fliss, I. (2012). Antimicrobial and Probiotic Properties of Yeasts: From Fundamental to Novel Applications. Frontiers in Microbiology, 3, 421. https://doi.org/10.3389/fmicb.2012.00421

Jazwinski, S. M. (1990). Aging and senescence of the budding yeast Saccharomyces cerevisiae. Molecular Microbiology, 4(3), 337-343. https://doi.org/10.1111/j.1365-2958.1990.tb00601.x

Jones, A. D., Boundy-Mills, K. L., Barla, G. F., Kumar, S., Ubanwa, B. & Balan, V. (2019). Microbial Lipid Alternatives to Plant Lipids. Methods in Molecular Biology (Clifton, N.J.), 1995, 1-32. https://doi.org/10.1007/978-1-4939-9484-7_1

Karayannis, D., Papanikolaou, S., Vatistas, C., Paris, C. & Chevalot, I. (2022). Yeast Lipid Produced through Glycerol Conversions and Its Use for Enzymatic Synthesis of Amino Acid-Based Biosurfactants. International Journal of Molecular Sciences, 24(1), 714. https://doi.org/10.3390/ijms24010714

Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V. & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249. https://doi.org/10.1016/j.petlm.2018.03.007

Kot, A. M., Błażejak, S., Gientka, I., Kieliszek, M. & Bryś, J. (2018). Torulene and torularhodin: «new» fungal carotenoids for industry? Microbial Cell Factories, 17(1), 49. https://doi.org/10.1186/s12934-018-0893-z

Kreusch, M. G. & Duarte, R. T. D. (2021). Photoprotective compounds and radioresistance in pigmented and non-pigmented yeasts. Applied Microbiology and Biotechnology, 105(9), 3521-3532. https://doi.org/10.1007/s00253-021-11271-5

Liu, J., Sui, Y., Wisniewski, M., Droby, S. & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153-160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004

Madhavan, A., Arun, K. B., Sindhu, R., Krishnamoorthy, J., Reshmy, R., Sirohi, R., Pugazhendi, A., Awasthi, M. K., Szakacs, G. & Binod, P. (2021). Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up. Microbial Cell Factories, 20(1), 124. https://doi.org/10.1186/s12934-021-01617-z

Martins, F. S., Nardi, R. M. D., Arantes, R. M. E., Rosa, C. A., Neves, M. J. & Nicoli, J. R. (2005). Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. The Journal of General and Applied Microbiology, 51(2), 83-92. https://doi.org/10.2323/jgam.51.83

Martorell, M. M., Pajot, H. F. & Figueroa, L. I. C. de. (2017). Biological degradation of Reactive Black 5 dye by yeast Trichosporon akiyoshidainum. Journal of Environmental Chemical Engineering, 5(6), 5987-5993. https://doi.org/10.1016/j.jece.2017.11.012

McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology : WJG, 16(18), 2202-2222. https://doi.org/10.3748/wjg.v16.i18.2202

Menezes, A. G. T., Melo, D. de S., Ramos, C. L., Moreira, S. I., Alves, E. & Schwan, R. F. (2020). Yeasts isolated from Brazilian fermented foods in the protection against infection by pathogenic food bacteria. Microbial Pathogenesis, 140, 103969. https://doi.org/10.1016/j.micpath.2020.103969

Michelon, M., de Matos de Borba, T., da Silva Rafael, R., Burkert, C. A. V. & de Medeiros Burkert, J. F. (2012). Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Science and Biotechnology, 21(1), 1-8. https://doi.org/10.1007/s10068-012-0001-9

Mussagy, C. U., Dias, A. C. R. V., Santos-Ebinuma, V. C., Shaaban Sadek, M., Ahmad, M., de Andrade, C. R., Haddad, F. F., dos Santos, J. L., Scarim, C. B., Pereira, J. F. B., Floriano, J. F., Herculano, R. D. & Mustafa, A. (2024). Is the carotenoid production from Phaffia rhodozyma yeast genuinely sustainable? A comprehensive analysis of biocompatibility, environmental assessment, and techno-economic constraints. Bioresource Technology, 397, 130456. https://doi.org/10.1016/j.biortech.2024.130456

Nandy, S. K. & Srivastava, R. K. (2018). A review on sustainable yeast biotechnological processes and applications. Microbiological Research, 207, 83-90. https://doi.org/10.1016/j.micres.2017.11.013

Nguyen Van, P., Thi Hong Truong, H., Pham, T. A., Le Cong, T., Le, T. & Thi Nguyen, K. C. (2021). Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov. Mycobiology, 49(5), 507-520. https://doi.org/10.1080/12298093.2021.1968624

Ochoa-Viñals, N., Alonso-Estrada, D., Pacios-Michelena, S., García-Cruz, A., Ramos-González, R., Faife-Pérez, E., Michelena-Álvarez, L. G., Martínez-Hernández, J. L. & Iliná, A. (2024). Current Advances in Carotenoid Production by Rhodotorula sp. Fermentation, 10(4), 190. https://doi.org/10.3390/fermentation10040190

Olicón-Hernández, D. R., González-López, J. & Aranda, E. (2017). Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Frontiers in Microbiology, 8, 1792. https://doi.org/10.3389/fmicb.2017.01792

Olicón-Hernández, D. R., Guerra-Sánchez, G., Porta, C. J., Santoyo-Tepole, F., Hernández-Cortez, C., Tapia-García, E. Y. & Chávez-Camarillo, G. M. (2022). Fundaments and Concepts on Screening of Microorganisms for Biotechnological Applications. Mini Review. Current Microbiology, 79(12), 373. https://doi.org/10.1007/s00284-022-03082-2

Oliveira, T., Ramalhosa, E., Nunes, L., Pereira, J. A., Colla, E. & Pereira, E. L. (2017). Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innovative Food Science & Emerging Technologies, 44, 167-172. https://doi.org/10.1016/j.ifset.2017.06.003

Ons, L., Bylemans, D., Thevissen, K. & Cammue, B. P. A. (2020a). Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms, 8(12), 1930. https://doi.org/10.3390/microorganisms8121930

Parajó, J. C., Santos, V. & Vázquez, M. (1998). Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochemistry, 33(2), 181-187. https://doi.org/10.1016/S0032-9592(97)00045-9

Parapouli, M., Vasileiadis, A., Afendra, A.-S. & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology, 6(1), 1-31. https://doi.org/10.3934/microbiol.2020001

Pipiya, S. O., Mirzoeva, N. Z., Baranova, M. N., Eliseev, I. E., Mokrushina, Yu. A., Shamova, O. V., Gabibov, A. G., Smirnov, I. V. & Terekhov, S. S. (2023). Creation of Recombinant Biocontrol Agents by Genetic Programming of Yeast. Acta Naturae, 15(1), 74-80. https://doi.org/10.32607/actanaturae.11878

Pothoulakis, C. (2009). Review article: Anti-inflammatory mechanisms of action of Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics, 30(8), 826-833. https://doi.org/10.1111/j.1365-2036.2009.04102.x

Qamar, A., Aboudola, S., Warny, M., Michetti, P., Pothoulakis, C., LaMont, J. T. & Kelly, C. P. (2001). Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infection and Immunity, 69(4), 2762-2765. https://doi.org/10.1128/IAI.69.4.2762-2765.2001

Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y. & Huang, J. (2020). Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnology for Biofuels, 13, 74. https://doi.org/10.1186/s13068-020-01712-0

Raimondi, S., Rossi, M., Leonardi, A., Bianchi, M. M., Rinaldi, T. & Amaretti, A. (2014). Getting lipids from glycerol: New perspectives on biotechnological exploitation of Candida freyschussii. Microbial Cell Factories, 13, 83. https://doi.org/10.1186/1475-2859-13-83

Ruta, L. L., Kissen, R., Nicolau, I., Neagoe, A. D., Petrescu, A. J., Bones, A. M. & Farcasanu, I. C. (2017). Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Applied Microbiology and Biotechnology, 101(14), 5749-5763. https://doi.org/10.1007/s00253-017-8335-0

Saravanan, P., Kumaran, S., Bharathi, S., Sivakumar, P., Sivakumar, P., Pugazhvendan, S. R., Aruni, W. & Renganathan, S. (2021). Bioremediation of synthetic textile dyes using live yeast Pichia pastoris. Environmental Technology & Innovation, 22, 101442. https://doi.org/10.1016/j.eti.2021.101442

Schindler, D. (2020). Genetic engineering and synthetic genomics in yeast to understand life and boost biotechnology. Bioengineering, 4(7), 137. https://doi:10.3390/bioengineering7040137. PMID: 33138080; PMCID: PMC7711850.

Shaigani, P., Awad, D., Redai, V., Fuchs, M., Haack, M., Mehlmer, N. & Brueck, T. (2021). Oleaginous yeasts- substrate preference and lipid productivity: A view on the performance of microbial lipid producers. Microbial Cell Factories, 20(1), 220. https://doi.org/10.1186/s12934-021-01710-3

Shen, L., Kohlhaas, M., Enoki, J., Meier, R., Schönenberger, B., Wohlgemuth, R., Kourist, R., Niemeyer, F., van Niekerk, D., Bräsen, C., Niemeyer, J., Snoep, J. & Siebers, B. (2020). A combined experimental and modelling approach for the Weimberg pathway optimisation. Nature Communications, 11(1), 1098. https://doi.org/10.1038/s41467-020-14830-y

Shruthi, B., Deepa, N., Somashekaraiah, R., Adithi, G., Divyashree, S. & Sreenivasa, M. Y. (2022). Exploring biotechnological and functional characteristics of probiotic yeasts: A review. Biotechnology Reports (Amsterdam, Netherlands), 34, e00716. https://doi.org/10.1016/j.btre.2022.e00716

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F. & Sharma, A. (2020). Trichoderma: The «Secrets» of a Multitalented Biocontrol Agent. Plants (Basel, Switzerland), 9(6), 762. https://doi.org/10.3390/plants9060762

Sudiyani, Y., Prastya, M. E., Maryana, R., Triwahyuni, E. & Muryanto (2021). The Budding Yeast Saccharomyces cerevisiae as a Valuable Model Organism for Investigating Anti-Aging Compounds [Internet]. Saccharomyces. IntechOpen. https://doi.org/10.5772/intechopen.96662

Sun, G. L., Reynolds, Erin. E. & Belcher, A. M. (2019). Designing yeast as plant-like hyperaccumulators for heavy metals. Nature Communications, 10(1), 5080. https://doi.org/10.1038/s41467-019-13093-6

Sundararajan, P. & Ramasamy, S. P. (2024). Current perspectives on industrial application of microbial carotenoid as an alternative to synthetic pigments. Sustainable Chemistry and Pharmacy, 37, 101353. https://doi.org/10.1016/j.scp.2023.101353

Tamang, J. P. & Lama, S. (2022). Probiotic properties of yeasts in traditional fermented foods and beverages. Journal of Applied Microbiology, 132(5), 3533-3542. https://doi.org/10.1111/jam.15467

Terao, J. (2023). Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food & Function, 14(17), 7799-7824. https://doi.org/10.1039/D3FO02330C

Xie, Z.-T., Mi, B.-Q., Lu, Y.-J., Chen, M.-T. & Ye, Z.-W. (2024). Research progress on carotenoid production by Rhodosporidium toruloides. Applied Microbiology and Biotechnology, 108(1), 7. https://doi.org/10.1007/s00253-023-12943-0

Yan, F. X., Dong, G. R., Qiang, S., Niu, Y. J., Hu, C. Y. & Meng, Y. H. (2020). Overexpression of Δ12, Δ15-Desaturases for Enhanced Lipids Synthesis in Yarrowia lipolytica. Frontiers in Microbiology, 11, 289. https://doi.org/10.3389/fmicb.2020.00289

Zepeda-Giraud, L. F., Olicón-Hernández, D. R., Pardo, J. P., Villanueva, M. G. A. & Guerra-Sánchez, G. (2020). Biological Control of Thielaviopsis paradoxa and Colletotrichum gloeosporioides by the Extracellular Enzymes of Wickerhamomyces anomalus. Agriculture, 10(8), 325. https://doi.org/10.3390/agriculture10080325

Zha, J., Yuwen, M., Qian, W. & Wu, X. (2021). Yeast-Based Biosynthesis of Natural Products from Xylose. Frontiers in Bioengineering and Biotechnology, 9, 634919. https://doi.org/10.3389/fbioe.2021.634919

Zhang, H., Mahunu, G. K., Castoria, R., Yang, Q. & Apaliya, M. T. (2018). Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science & Technology, 78, 180-187. https://doi.org/10.1016/j.tifs.2018.06.00

Creative Commons License

TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

Downloads

Download data is not yet available.