Abstract
Encapsulins are protein nanocompartments found in bacteria and archaea that help with enzyme compartmentalization and control of internal metabolic processes. These icosahedral structures, which evolved from viral capsids, assemble naturally and are highly stable against heat and chemicals. Their ability to recognize and trap specific proteins through targeting peptides, along with their adaptability to genetic engineering, makes them useful for many applications. This review covers current knowledge about the biology, structure, and functional types of encapsulins, including new insights from recent phylogenetic studies. It explains how natural encapsulation works and describes engineered methods to load different cargos using genetic fusion or post-translational assembly. The review also discusses recent advancements in pore and surface engineering, which enable customized molecular transport and interactions with target cells. Lastly, it explores their uses in biocatalysis, diagnostics, targeted therapy, biosensing, and intracellular storage, along with the key challenges and future prospects for using encapsulins in biomedical and industrial fields. Overall, encapsulins show great promise as modular tools in biotechnology and synthetic biology.
References
Adamson, L. S. R., Tasneem, N., Andreas, M. P., Close, W., Jenner, E. N., Szyszka, T. N., Young, R., Cheah, L. C, Norman, A., MacDermott-Opeskin, H. I., O’Mara, M. L., Sainsbury, F., Giessen, T. W. & Lau, Y. H. (2022). Pore structure controls stability and molecular flux in engineered protein cages. Science Advances, 8(5), eabl7346. DOI: 10.1126/sciadv.abl7346
Altenburg, W. J., Rollins, N., Silver, P. A. & Giessen, T. W. (2021). Exploring targeting peptide–shell interactions in encapsulin nanocompartments. Scientific Reports, 11, 4951. DOI: 10.1038/s41598-021-84329-z
Andreas, M. P. & Giessen, T. W. (2021). Large-scale computational discovery and analysis of virus-derived microbial nanocompartments. Nature Communications, 12, 4748. DOI: 10.1038/s41467-021-25071-y
Boyton, I., Goodchild, S. C., Diaz, D., Elbourne, A., Collins-Praino, L. E. & Care, A. (2021). Characterizing the dynamic disassembly/reassembly mechanisms of encapsulin protein nanocages. ACS Omega, 7(1), 823–836. DOI: 10.1021/acsomega.1c05472
Cassidy-Amstutz, C., Oltrogge, L. M., Going, C. C., Lee, A., Teng, P., Quintanilla, D., East-Seletsky, A., Williams, E. R. & Savage, D. F. (2016). Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin. Biochemistry, 55(24), 3461–3468. DOI: 10.1021/acs.biochem.6b00294
Choi, H., Eom, S., Kim, H., Bae, Y., Jung, H. S. & Kang, S. (2021). Load and display: Engineering encapsulin as a modular nanoplatform for protein-cargo encapsulation and protein-ligand decoration using split intein and SpyTag/SpyCatcher. Biomacromolecules, 22(7), 3028–3039. DOI: 10.1021/acs.biomac.1c00481
Diaz, D., Vidal, X., Sunna, A. & Care, A. (2021). Bioengineering a light-responsive encapsulin nanoreactor: A potential tool for in vitro photodynamic therapy. ACS Applied Materials & Interfaces, 13(7), 7977–7986. DOI: 10.1021/acsami.0c21141
Giessen, T. W. (2016). Encapsulins: Microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Current Opinion in Chemical Biology, 34, 1–10. DOI: 10.1016/j.cbpa.2016.05.013
Giessen, T. W. (2024). The structural diversity of encapsulin protein shells. ChmBioChem, 25, e202400535. DOI: 10.1002/cbic.202400535
Giessen, T. W. & Silver, P. A. (2016). A catalytic nanoreactor based on in vivo encapsulation of multiple enzymes in an engineered protein nanocompartment. ChemBioChem, 17(20), 1931–1935. DOI: 10.1002/cbic.201600431
Giessen, T. W. & Silver, P. A. (2017). Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nature Microbiology, 2, 17029. DOI: 10.1038/nmicrobiol.2017.29
Gómez-Barrera, S. N., Delgado-Tapia W. Á., Hernández-Gutiérrez, A. E., Cayetano-Cruz, M., Méndez, C. & Bustos-Jaimes, I. (2025). Surface engineering of the encapsulin nanocompartment of Myxococcus xanthus for cell-targeted protein delivery. ACS Omega, 10(5), 1234–1245. DOI: 10.1021/acsomega.4c10285
He, D., Hughes, S., Vanden-Hehir, S., Georgiev, A., Altenbach, K., Tarrant, E., Mackay, C. L., Waldron, K. J., Clarke, D. J. & Marles-Wright, J. (2016). Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. eLife, 5, e18972. DOI: 10.7554/eLife.18972
Helalat, S. H., Téllez, R. C., Dezfouli, E. A. & Sun, Y. (2024). Sortase A-based post-translational modifications on encapsulin nanocompartments. Biomacromolecules, 25(5), 2762–2769. DOI: 10.1021/acs.biomac.3c01415
Jenkins, M. C. & Lutz, S. (2021). Encapsulin nanocontainers as versatile scaffolds for the development of artificial metabolons. ACS Synthetic Biology, 10(5), 1141–1151. DOI: 10.1021/acssynbio.0c00636
Jones, J. A., Andreas, M. P. & Giessen, T. W. (2024). Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nature Communications, 15, 2558. DOI: 10.1038/s41467-024-46880-x
Jones, J. A. & Giessen, T. W. (2021). Advances in encapsulin nanocompartment biology and engineering. Biotechnology and Bioengineering, 118(1), 491–505. DOI: 10.1002/bit.27564
Kwon, S., Andreas, M. P. & Giessen, T. W. (2024). Pore engineering as a general strategy to improve protein-based enzyme nanoreactor performance. ACS Nano, 18(37), 25740–25753. DOI: 10.1021/acsnano.4c08186
Kwon, S. & Giessen, T. W. (2022). Engineered protein nanocages for concurrent RNA and protein packaging in vivo. ACS Synthetic Biology, 11(10), 3504–3515. DOI: 10.1021/acssynbio.2c00391
Lau, Y. H., Giessen, T. W., Altenburg, W. J. & Silver, P. A. (2018). Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nature Communications, 9, 1311. DOI: 10.1038/s41467-018-03768-x
McDowell H. B. & Hoiczyk E. (2022). Bacterial nanocompartments: structures, functions and applications. Journal of Bacteriology, 204(3), e00346-21. DOI: 10.1128/JB.00346-21
Michel-Souzy, S., Hamelmann, N. M., Zarzuela-Pura, S., Paulusse, J. M. J. & Cornelissen, J. J. L. M. (2021). Introduction of surface loops as a tool for encapsulin functionalization. Biomacromolecules, 22(12), 5234–5242. DOI: 10.1021/acs.biomac.1c01156
Nichols, R. J., Cassidy-Amstutz, C., Chaijarasphong, T. & Savage, D. F. (2017). Encapsulins: Molecular biology of the shell. Critical Reviews in Biochemistry and Molecular Biology, 52(5), 583–594. DOI: 10.1080/10409238.2017.1337709
Nichols, R. J., LaFrance, B., Phillips, N.R., Radford, D. R., Oltrogge, L. M., Valentin-Alvarado, L. E., Bischoff, A. J., Nogales, E. & Savage, D. F. (2021) Discovery and characterization of a novel family of prokaryotic nanocompartments involved in sulfur metabolism eLife, 10, e59288. DOI: 10.7554/eLife.59288
Pérez-Sánchez, J. E. & Bustos-Jaimes, I. (2025). Development of a pyridoxine 4-oxidase nanoreactor for oxidative therapy. International Journal of Biological Macromolecules, 320, 145776. DOI: 10.1016/j.ijbiomac.2025.145776.
Sigmund, F., Massner, C., Erdmann, P., Stelzl, A., Rolbieski, H., Desai, M., Bricault, S., Wörner, T. P., Snijder, J., Geerlof, A., Fuchs, H., Hrabě de Angelis, M., Heck, A. J. R., Jasanoff, A., Ntziachristos, V., Plitzko, J. M. & Westmeyer, G. G. (2018). Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nature Communications, 9, 1990. DOI: 10.1038/s41467-018-04227-3
Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M. J., Stetter, K. O., Weber-Ban, E. & Ban, N. (2008). Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nature Structural & Molecular Biology, 15, 939–947. DOI: 10.1038/nsmb.1473
Van de Steen, A., Khalife, R., Colant, N., Khan, H. M., Deveikis, M., Charalambous, S. Robinson, C. M., Dabas, R., Serna, S. E., Catana, D. A., Pildish, K., Kalinovskiy, V., Gustafsson, K. & Frank, S. (2021). Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synthetic and Systems Biotechnology, 6(3), 231–241. DOI: 10.1016/j.synbio.2021.09.001
Williams, E. M., Jung, S. M., Coffman, J. L. & Lutz, S. (2018). Pore engineering for enhanced mass transport in encapsulin nanocompartments. ACS Synthetic Biology, 7(11), 2514–2517. DOI: 10.1021/acssynbio.8b00295
Wiryaman, T. & Toor, N. (2022). Recent advances in the structural biology of encapsulin bacterial nanocompartments. Journal of Structructural Biololgy: X, 6, 100062. DOI: 10.1016/j.yjsbx.2022.100062
TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

