Resumen
Glucocinina, es un término acuñado por James Collip para los péptidos de origen animal, vegetal o de microorganismos, “con una función en el metabolismo de la glucosa” y con la capacidad de disminuir la glucemia como la insulina en animales. Sin embargo, la toxicidad de algunos de los extractos y el gran éxito de la insulina recombinante humana, hicieron que se redujeran los esfuerzos en los estudios de purificación, secuenciación y vías de señalización de estas glucocininas en los años siguientes. La reciente investigación sobre péptidos con similitud a la insulina recibió nuevos aportes, no sólo con respecto a su potencial para reducir los niveles de glucosa en la sangre, sino también en los mecanismos de acción, blancos y vías de transducción de señales que se han conservado entre los diferentes grupos taxonómicos estudiados. Esta revisión presenta una visión general del conocimiento actual sobre las glucocininas de varios organismos, hace énfasis en la necesidad de una nomenclatura más adecuada y analiza de manera sucinta nuevas aplicaciones biotecnológicas.
Citas
Agredano-Moreno, L. T., Reyes de la Cruz, H., Martínez-Castilla, L. P. & Sánchez de Jiménez, E. (2007). Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Molecular bioSystems, 3, 794–802. https://doi.org/10.1039/b705803a
Anwer, R., Khursheed, S. & Fatma, T. (2012). Detection of immunoactive insulin in Spirulina. Journal of Applied Phycology, 24, 583-591. https://doi.org/10.1007/s10811-011-9757-1
Aparicio-Fabre, R., Guillén, G., Estrada, G., Olivares-Grajales, J., Gurrola, G. & Sánchez, F. (2006). Profilin tyrosine phosphorylation in poly-L-proline-binding regions inhibits binding to phosphoinositide 3-kinase in Phaseolus vulgaris. The Plant Journal: for Cell and Molecular Biology, 47, 491–500. https://doi.org/10.1111/j.1365-313X.2006.02787.x
Avila-Alejandre, A. X., Espejel, F., Paz-Lemus, E., Cortés-Barberena, E., Díaz de León-Sánchez, F., Dinkova, T. D., Sánchez de Jiménez, E. & Pérez-Flores, L. J. (2013). Effect of insulin on the cell cycle of germinating maize seeds (Zea mays L.). Seed Sciences Research, 1, 3-14. https://doi.org/10.1017/S0960258512000281
Baldwa, V. S., Bhandari, C. M., Pangaria, A. & Goyal, R. K. (1977). Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source. Upsala Journal of Medical Sciences, 82, 39-41.
Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. (1922). Pancreatic extracts in the treatment of diabetes mellitus. Journal of Canadian Medic Association, 12,141-146. PMC1524425.
Bliss, M. (2005). Resurrections in Toronto: The Emergence of Insulin. Hormone Research, 62, 98-102. https://doi.org/10.1159/000087765
Collip, J. B. (1923a). Glucokinin. A new hormone present in plant tissue. Preliminary paper. Journal Biological Chemistry, 56, 513–543. https://doi.org/10.1016/S0021-9258(18)85588-0
Collip, J. B. (1923b). Glucokinin. Second paper. Journal Biological Chemistry, 56, 513–543. https://doi.org/10.1016/S0021-9258(18)85526-0
Costa, I. S., Medeiros, A. F., Piuvezam, G., Medeiros, G., Maciel, B. & Morais, A. (2020). Insulin-Like Proteins in Plant Sources: A Systematic Review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 3421–3431. https://doi.org/10.2147/DMSO.S256883
Deak, M., Casamayor, A., Currie, R. A., Downes, C. P. & Alessi, D. R. (1999). Characterization of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Letters, 451, 220–226. https://doi.org/10.1042/0264-6021:3510019
Digirolamo, F. A., Miranda, M. R., Bouvier, L. A., Cámara, M. M., Cánepa, G. E. & Pereira, C. A. (2012). La vía de transducción de señales TOR de mamíferos está presente en Trypanosoma cruzi. Reconstrucción in sillico y posibles funciones. MEDICINA, 72, 221-226. https://docplayer.es/23622652
Dinkova, T. D., Reyes de la Cruz, H., García-Flores, C., Aguilar, R., Jiménez-García, L. F. & Sánchez de Jiménez, E. (2007). Dissecting the TOR-S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiologia Plantarum, 130, 1–10. https://doi.org/10.1111/j.1399-3054.2007.00862.x
Domínguez, A. J., Fierros Romero, G., Mellado-Rojas, M. A., Reyes de la Cruz, H., García Pineda, E. & Peña, E. M. (2013). Rutas de señalización de la insulina en plantas. Ciencia Nicolaita, 54, 26-40.
Eyster, W. H. & Ellis, M. M. (1924). Growth of maize seedlings as affected by glucokinin and insulin. The Journal of General Physiology, 6, 653-670. https://doi.org/10.1085/jgp.6.6.653
Fralick, M. & Zinman, B. (2021). The discovery of insulin in Toronto: beginning a 100 years journey of research and clinical achievement. Diabetologia, 64, 947–953. https://doi.org/10.1007/s00125-020-05371-6
García-Flores, C., Aguilar, R., De la Cruz, H. R., Albores, M. & de Jiménez, E. S. (2001). A maize insulin-like growth factor signals to a transduction pathway that regulates protein synthesis in maize. The Biochemical Journal, 358, 95-100. https://doi.org/10.1042/0264-6021:3580095
Garrocho-Villegas, V. & de Jiménez, E. S. (2012). TOR pathway activation in Zea mays L. tissues: conserved function between animal and plant kingdoms. Plant Signaling & Behavior, 7(6), 675–677. https://doi.org/10.4161/psb.19993
Garrocho-Villegas, V., Aguilar, C. R. & Sánchez de Jiménez, E. (2013). Insights into the TOR-S6K Signaling Pathway in Maize (Zea mays L.). Pathway Activation by Effector−Receptor Interaction. Biochemistry, 52, 9129−9140. https://doi.org/10.1021/bi401474x
González, F., González, R. & Triana-Alonso, F. (2011). Influencia de las hormonas tiroxina, insulina, glucagón y cortisol en el crecimiento y expresión genética de Escherichia coli en medio de cultivo líquido. Avances en Ciencias de la Salud, 1, 30-37. http://servicio.bc.uc.edu.ve/fcs/avances/vol1n1/art5.pdf
Goodman, D. B. P. & Davis, W. L. (1993). Insulin accelerates the postgerminative development of several fat-storing seeds. Biochemical and Biophysical Research Communications, 190, 440-446. https://doi.org/10.1006/bbrc.1993.1067
Hashidume, T., Sakano, T., Mochizuki, A., Ito, K., Ito, S., Kawarasaki, Y. & Miyoshi, N. (2018) Identification of soybean peptide leginsulin variants in different cultivars and their insulin-like activities. Scientific Reports, 8, 16847 https://doi.org/10.1038/s41598-018-35331-5
Hernández-López, A. & Avila-Alejandre, A. X. (2025). Insulina: más allá de la diabetes. Alternativas Biotecnológicas de fuentes, usos e investigación. Revista Mexicana de Ciencias Farmacéuticas, 2, 1-20.
Hernández-López, A. & Avila-Alejandre, A. X. (2025). Las glucocininas favorecen el desarrollo temprano de Capsicum chinense (Jacq.). REMEXCA, 16, 1-17
Karamanou, M., Protogerou, A., Tsoucalas, G., Androutsos, G. & Poulakou-Rebelakou, E. (2016). Milestones in the history of diabetes mellitus: The main contributors. World Journal of Diabetes, 7, 1-7. https://doi.org/10.4239/wjd.v7.i1.1
Khanna, P., Nag, T. N., Chandrajaia, S. & Mohan, S. V. (1976). Process for isolation of insulin from plant source. United States Patent, 3, 945-988. https://www.freepatentsonline.com/3945988.html (accessed april 23, 2024).
Kisidayová, S. & Váradyová, Z. (2005). Effect of insulin on in vitro fermentation activity of microrganism community of rumen ciliate Entodinium caudatum culture. Cell biology international, 29, 147–152. https://doi.org/10.1016/j.cellbi.2004.10.002
Laguna-Hernández, G., Río-Zamorano, C. A., Meneses-Ochoa, I. G. & Brechú-Franco, A. E. (2017). Histochemistry and immunolocalization of glucokinin in antidiabetic plants used in traditional Mexican medicine. European Journal of Histochemistry, 61, 2782. https://doi.org/10.4081/ejh.2017.2782
Le Roith, D., Shiloach, J., Roth, J. & Lesniak, M. A. (1980). Evolutionary origins of vertebrate hormones: Substances similar to mammalian insulins are native to unicellular eukaryotes (Tetrahymena/Neurospora). Proceedings of the National Academy of Sciences of the United States of America, 10, 6184-6188. https://doi.org/10.1073/pnas.77.10.6184
Le Roith, D., Shiloach, J., Roth, J. & Lesniak, M. A. (1981). Insulin or a Closely Related Molecule Is Native to Escherichia coli. Journal of Biochemistry Chemistry, 13, 6533-6536. https://www.jbc.org/article/S0021-9258(19)69020-4/pdf
Li, A. (1992) J. B. Collip, A.M. Hanson and the Isolation of the Parathyroid Hormone, or Endocrines and Enterprise. Journal of the History of Medicine and Allied Sciences, 47, 405–438, https://doi.org/10.1093/jhmas/47.4.405
Liu, Y. & Xiong, Y. (2022). Plant target of rapamycin signaling network: Complexes, conservations and specificities. Journal of Integrative Plant Biology, 64, 342–370. https://doi.org/10.1111/jipb.13212
López-Simarro, F., Cols-Sagarra, C., Mediavilla Bravo, J. J., Cañís-Olivé, J., Hernández-Teixidó, C. & González Mohíno Loro, M. B. (2022). Actualización en el uso de insulinas para el médico de familia, Semergen, 48, 54–62. https://doi.org/10.1016/j.semerg.2021.04.011
Ma, D., Endo, S., Betsuyaku, S., Shimotohno, A. & Fukuda, H. (2020). CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. Plant Molecular Biology, 104, 561–574. https://doi.org/10.1007/s11103-020-01059-y
Madrid, M., Vázquez-Marín, B., Franco, A., Soto, T., Vicente-Soler, J., Gacto, M. & Cansado, J. (2016). Multiple crosstalk between TOR and the cell integrity MAPK signaling pathway in fission yeast. Scientific Reports, 6, 37515. http://doi.org/10.1038/srep37515
Marella, S., Maddirela, D. R., Kumar, E. G., Tilak, T. K., Badri, K. R. & Chippada, A. (2016). Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status. International Journal of Biological Macromolecules, 86, 481-488. https://doi.org/10.1016/j.ijbiomac.2016.01.062
Marshall, E., Costa, L. M. & Gutierrez-Marcos, J. (2011). Cysteine-Rich Peptides (CRPs) mediate diverse aspects of cell–cell communication in plant reproduction and development. Journal Experimental Botany, 62, 1677–1686. https://doi.org/10.1093/jxb/err002
MacDougall, H. (2006). Review of J. B. Collip and the Development of Medical Research in Canada: Extracts and Enterprise. McGill-Queen’s Associated Medical Services (Hannah Institute) Studies in the History of Medicine, no. 18, by A. Li. Bulletin of the History of Medicine, 80, 599–601. http://www.jstor.org/stable/44448456
Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C. & Robaglia, C. (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the United States of America, 99, 6422–6427. https://doi.org/10.1073/pnas.092141899
Miller, B. S., Rogol, A. D. & Rosenfeld, R. G. (2022). The History of the Insulin-Like Growth Factor System. Hormone Research in Paediatrics, 95, 619–630. https://doi.org/10.1159/000527123
Montandon, S. & Jornayvaz, F. R. (2017). Effects of Antidiabetic Drugs on Gut Microbiota. Composition Genes, 8, 250. http://doi.org/10.3390/genes8100250
Montané, M. H. & Menand, B. (2019). TOR inhibitors: from mammalian outcomes to pharmacogenetics in plants and algae. Journal of Experimental Botany, 70, 2297–2312. https://doi.org/10.1093/jxb/erz053
Müller, G. A. (2019). Insulin-like and mimetic molecules from non-mammalian organisms: potential relevance for drug discovery. Archives of Physiology and Biochemistry, 126, 420–429. https://doi.org/10.1080/13813455.2018.1551906
Myers, M. G. & White, M. F. (2002). The Molecular Basis of Insulin Action. In: Gruenberg G, Zick Y. eds. Insulin Signaling: From cultured cells to animal models. Taylor and Francis, New York, Pp 55-87. eBook ISBN: 9780429101007. https://doi.org/10.1201/b12794
Navarro, S. (2014). Breve historia de la anatomía y fisiología de una recóndita y enigmática glándula llamada páncreas. Gastroenterologia y Hepatologia, 37(9), 527–534. https://doi.org/10.1016/j.gastrohep.2014.06.007
Nobukuni, T., Joaquin, M., Roccio, M., Dann, S. G., Kim, S. Y., Gulati, P., Byfield, M. P., Backer, J. M., Natt, F. & Bos, J. L. (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proceedings of the National Academy of Sciences of the United States of America, 102, 14238–14243. https://doi.org/10.1073/pnas.0506925102
Oliveira, A. E. A., Machado, O. L. T., Gomes, V. M., Xavier-Neto, J., Pereira, A. C. & Vieira, J. G. H. (1999). Jack bean seed coat contains a protein with complete sequence homology to bovine insulin. Protein Peptides Letters, 6, 15-21. https://10.2174/092986650601221107153832
Oliveira, E. A., Ribeiro, E. S., da Cunha, M., Gomes, V., Fernandes, K. & Xavier-Filho, J. (2004) Insulin accelerates seedling growth of Canavalia ensiformis (Jack bean). Plant Growth Regulation, 43, 57–62. https://doi.org/10.1023/B:GROW.0000038259.34384.0c
Pascual-Morales, E., Arteaga-Tinoco, I., García-Pineda, E., Mellado-Rojas, M. E. & Beltrán Peña, E. (2012). La insulina promueve el crecimiento de los pelos radiculares de Arabidopsis thaliana. Biológicas, 14, 1-6. https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=129
Patel, D. K., Prasad, S. K., Kumar, R. & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2, 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X
Paula, P. C., Sousa, D. O., Oliveira, J. T., Carvalho, A. F., Alves, B. G., Pereira, M. L., Farias, D. F., Viana, M. P., Santos, F. A., Morais, T. C. & Vasconcelos, I. M. (2017). A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules, 22, 271-291. https://doi.org/10.3390/molecules22020271
Peña-Uribe, C. A. & Reyes de la Cruz, H. (2017). Insulin –induced changes in metabolism-related proteins during maize germination. Plant Cell Tissue Organ Culture, 128,77-84, https://doi.org/10.1007/s11240-016-1084-4
Rabeh, K., Oubohssaine, M. & Hnini, M. (2024). TOR in plants: Multidimensional regulators of plant growth and signaling pathways. Journal of Plant Physiology, 294, 154186. https://doi.org/10.1016/j.jplph.2024.154186
Reyes de la Cruz, H., Aguilar, R. & Sánchez de Jiménez, E. (2004). Functional characterization of maize ribosomal S6 protein kinase (ZmS6K), a plants ortholog of methazoan p70 (S6K) Biochemistry, 43, 533–539. https://doi.org/10.1021/bi035222z
Rexin, D., Meyer, C., Robaglia, C. & Veit, B. (2015). TOR signalling in plants. Biochemical Journal, 470, 1–14. https://10.1042/BJ20150505
Rinderknecht, E. & Humbel, R. E. (1978). The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. Journal of Biological Chemistry, 253, 2769–2776. https://www.jbc.org/article/S0021-9258(17)40889-1/pdf
Rodríguez-López, C. D., Rodríguez-Romero, A., Aguilar, R. & Sánchez de Jiménez, E. (2011). Biochemical characterization of a new Maize (Zea mays L.). Peptide growth factor. Protein Peptides Letters, 18, 1-8. https://doi.org/10.2174/092986611794328636
Sangeetha, M. K. & Vasanthi, R. H. (2009). Plant kingdom claims for insulin!!! Sri Ramachandra. Journal of Medicine, 1, 25-31. https://www.sriramachandra.edu.in/university/pdf/research/journals/aug_2008/book_6.pdf .
Shamran, D. J. & Al-Jumaili, E. F. (2020). Phytochemical Screening by HPLC and FTIR Spectroscopy of Glucokinin Isolated from Methanol Extract of Bauhinia variegata. Medico-Legal Update, 20, 759-763. https://doi.org/10.37506/mlu.v20i2.1206 .
Sheng, Q., Yao, H., Xu, H., Ling, X. & He, T. (2004). Isolation of plant insulin from Momordica charantia seeds by gel filtration and RP-HPLC. Journal of Chinese Medicinal Materials, 27(6), 414–416.
Silva, L. B., Santos, S. S. S., Azevedo, C. R., Cruz, M. A. L., Venâncio, T. M., Cavalcante, C. P., Uchoa, A. F., Astolfi, S., Oliveira, A. E. A., Fernandes, K. V. S. & Xavier-Filho, J. (2002).The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens. Brazilian Journal Medical Biology Research, 35, 297-303. https://doi.org/10.1590/s0100-879x2002000300004
Sotelo, R., Garrocho-Villegas, V., Aguilar, C. R., Calderón, M. E. & Sánchez de Jiménez, E. (2010). Coordination of cell growth and cell division in maize (Zea mays L.) relevance of the conserved TOR signal transduction pathway. In Vitro Cellular & Developmental Biology Plant, 46, 578–86. https://www.jstor.org/stable/40981348
Souza, A. & López, J. A. (2004). Insulin or insulin-like studies on unicellular organisms: A review. Brazilian Archives of Biology and Technology, 47, 973-981. https://www.scielo.br/j/babt/a/dbK6VRHwStd7jfRwkJR6gvt/?format=pdf
Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nature Reviews. Molecular Cell Biology, 7, 85-96. https://doi.org/10.1038/nrm1837
Torres, F., Paz, G., Zapata, M. (2013). Las plantas pueden ser fuente de compuestos antidiabéticos que aún no han sido científicamente validados. Ciencia & Salud, 1, 11-18.
Triana, J. L., Triana-Alonso, F., González, G., Lozano, G., Reggio, R. & Ferreras, A. C. (2011). Efecto de la insulina en Saccharomyces cerevisiae: estimulación de la actividad enzimática de piruvato quinasa, expresión de proteínas citoplasmáticas y proliferación celular. Revista de la Sociedad Venezolana de Microbiología, 31, 48-56. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562011000100010&lng=es&tlng=es
Turck, F., Kozma, S. C., Thomas, G. & Nagy, F. (1998). A heat-sensitive Arabidopsis thaliana kinase substitutes for human p70s6k function in vivo. Molecular Cell Biology, 18, 2038–2044. https://doi.org/10.1128/MCB.18.4.2038
Venâncio, T. M., Oliveira, A. E., Silva, L. B., Machado, O. L., Fernandes, K.V. & Xavier-Filho, J. (2003). A protein with amino acid sequence homology to bovine insulin is present in the legume Vigna unguiculata (cowpea). Brazilian Journal of Medical and Biological Research, 36, 1167-1173. https://doi.org/10.1590/S0100-879X2003000900004
Villa-Hernández, J. M., Dinkova, T. D., Aguilar-Caballero, R., Rivera-Cabrera, F., Sánchez de Jiménez, E. & Pérez-Flores, L. J. (2013). Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie, 95, 1871–1879. https://doi.org/10.1016/j.biochi.2013.06.011
Vitali, V., Horn, F. & Catania, F. (2018). Insulin-like signaling within and beyond metazoans. Biological Chemistry, 399, 851–857. https://doi.org/10.1515/hsz-2018-0135
Xavier-Filho, J., Oliveira, A. E. A., Silva, L. B. da, Azevedo, C. R., Venâncio, T. M., Machado, O. L. T., Oliva, M. L., Fernandes, K. V. S. & Xavier-Neto, J. (2003). Plant insulin or glucokinin: a conflicting issue. Brazilian Journal of Plant Physiology, 15, 67–78. https://doi.org/10.1590/S1677-04202003000200002
Xiong, Y. & Sheen, J. (2012). Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. The Journal of Biological Chemistry, 287, 2836–2842. https://doi.org/10.1074/jbc.M111.300749
Whitewoods, C. D. (2021). Evolution of CLE peptide signaling. Seminars in Cell & Developmental Biology, 109, 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.