Abstract
This review presents the relevant characteristics and properties of metal-organic frameworks (MOFs) and their potential use as adsorbent materials. Their hybrid nature comes from the coordination of bonds between metal nodes and organic ligands, resulting in highly porous and modular two-dimensional or three-dimensional crystalline structures with a large surface area and specific functional groups. These structures are ideal for gas separation and the removal of compounds that pollute water through adsorption and diffusion mechanisms. The wide availability of organic ligands and metal ion sources allows for the design of a virtually infinite variety of MOFs with specific porosity and physicochemical properties. Their components are described, and the main methods for their synthesis—solvothermal, sonochemical, mechanochemical, and electrochemical routes—are outlined. The highlights of some of their characteristics are also addressed, providing an overview that underscores their importance in the field of industrial gas separation and adsorption, as well as in the removal of heavy metals and dyes from aqueous media, when applied as a solid adsorbent or in membrane form.
References
Abdi, J., Mahmoodi, N. M., Vossoughi, M. & Alemzadeh, I. (2019). Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems. Micropor. Mesopor. Mater., 273, 177-188. https://doi.org/10.1016/j.micromeso.2018.06.040
Adam, M. R., Othman, M. H. D., Kurniawan, T. A., Puteh, M. H., Ismail, A. F., Khongnakorn, W., Rahman, M. A. & Jaafar, J. (2022). Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng., 10, 107633. https://doi.org/10.1016/j.jece.2022.107633
Adegoke, K. A., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., Maxakato, N. W., Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F. & Oyedotun, K.O. (2024). UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation. Separ. Purif. Technol., 331, 125456. https://doi.org/10.1016/j.seppur.2023.125456
Ahmed, I. & Jhung, S. H. (2014). Composites of metal-organic frameworks: Preparation and application in adsorption. Mater. Today, 17, 136-146. https://doi.org/10.1016/j.mattod.2014.03.002
Andriamitantsoa, R. S., Wang, J., Dong, W., Gao, H. & Wang, G. (2016). SO3H-functionalized metal organic frameworks: An efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv., 6, 35135-35143. https://doi.org/10.1039/C6RA02575G
Bao, S., Li, K., Ning, P., Peng, J., Jin, X. & Tang, L. (2018). Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe3O4/MIL-101(AI0.9 Fe0.1)/NH2) for efficient removal of methyl orange from aqueous solution. J. Taiwan Inst. Chem. Eng., 87, 64-72. https://doi.org/10.1016/j.jtice.2018.03.009
Bayram, O., Moral, E., Köksal, E., Göde, F. & Pehlivan, E. (2023). Removal of methyl blue and malachite green from water using biodegradable magnetic Tamarindus indica fruit seed biochar: Characterization, equilibrium study, modelling and thermodynamics. Sustain. Chem. Environ., 3, 100023. https://doi.org/10.1016/j.scenv.2023.100023
Bhuyan, A. & Ahmaruzzaman, M. (2022). Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorg. Chem. Commun., 140, 109436. https://doi.org/10.1016/j.inoche.2022.109436
Bibi, R., Wei, L., Shen, Q., Tian, W., Kehinde, O., Li, N. & Zhou, J. (2017). Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks. J. Chem. Eng. Data, 62, 1615-1622. https://doi.org/10.1021/acs.jced.6b01012
Bitzer, J., Heck, S. L. & Kleist, W. (2020). Tailoring the breathing behavior of functionalized MIL- 53(Al,M)-NH2 materials by using the mixed-metal concept. Micropor. Mesopor. Mater., 308, 110329. https://doi.org/10.1016/j.micromeso.2020.110329
Cai, X., Xiw, Z., Pang, M. & Lin, J. (2019). Controllable synthesis of highly uniform nanosized HKUST-1 crystals by liquid–solid–solution method. Cryst. Growth Des., 19, 556-561. https://doi.org/10.1021/acs.cgd.8b01695
Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. (2014). Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev., 43, 5594-5617. https://doi.org/10.1039/c4cs00078a
Chen, C., Yue, J., Zhou, J., Liu, Q., Tang, Y., Chen, C. & Xiao G. (2025). Removal of Cr (VI) by coupled adsorption and photocatalytic degradation based on Ag/ZIF-8/PVDF membrane. Chem. Eng. Process. Process Intensif., 208, 110120. https://doi.org/10.1016/j.cep.2024.110120
Chen, Y., Wu, H., Liu, Z., Sun, X., Xia, Q. & Li, Z. (2018). Liquid-assisted mechanochemical synthesis of copper based MOF505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res., 57, 703-709. http://dx.doi.org/10.1021/acs.iecr.7b03712
Chen, Y. Z., Zhang, R., Jiao, L. & Jiang, H. L. (2018). Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev., 362, 1-23. https://doi.org/10.1016/j.ccr.2018.02.008
Cravillon, J., Münzer, S., Lohmeier, S. J., Feldhoff, A., Hubert, K. & Wiebcke, M. (2009). Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater., 21, 1410-1412. https://doi.org/10.1021/cm900166h
Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res., 49, 483-493. https://doi.org/10.1021/acs.accounts.5b00530
Cun, J. E., Fan, X., Pan, Q., Gao, W., Luo, K., He, B. & Pu, Y. (2022). Copper-based metal–organic frameworks for biomedical applications. Adv. Colloid Interface Sci., 305,102686. https://doi.org/10.1016/j.cis.2022.102686
Davoodi, M., Davar, F., Rezayat, M. R., Jafari, M. T. & Shalan, A. E. (2021). Cobalt metal-organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies. RSC Adv., 11, 2643. https://doi.org/10.1039/D0RA09298C
Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T. & Farha, O. K. (2014). Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev., 43, 5896-5912. https://doi.org/10.1039/C4CS00067F
Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function. Acta Cryst. В, 70, 3-10. https://doi.org/10.1107/S2052520613029557
Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S. W. & Jeon, B. H. (2019). Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev., 380, 330-352. https://doi.org/10.1016/j.ccr.2018.10.003
Ding, M., Cai, X. & Jiang, H. L. (2019). Improving MOF stability: Approaches and applications. Chem. Sci., 10, 10209-10230. https://doi.org/10.1039/C9SC03916C
Duan, C., Yu, Y. & Hu, H. (2022). Recent progress son synthesis of ZIF-67 based materials and their application to heterogeneous catalysis. Green Energy Environ., 7, 3-15. https://doi.org/10.1016/j.gee.2020.12.023
Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M. & Ahsaine, H. A. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv., 12, 31801. https://doi.org/10.1039/D2RA05717D
Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Flexibility in metal-organic frameworks: A fundamental understanding. Coord. Chem. Rev., 358, 125-152. https://doi.org/10.1016/j.ccr.2017.11.022
Fard, A. K., McKay, G., Buekenhoudt, A., Sulaiti, H. A., Motmans, F., Khraisheh, M. & Atieh, M. (2018). Inorganic membranes: Preparation and application for water treatment and desalination. Materials, 11, 74. https://doi.org/10.3390/ma11010074
Farha, O. K. & Hupp, J. T. (2010). Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res., 43, 1166-1175. https://doi.org/10.1021/ar1000617
Gangu, K. K., Maddila, S., Mukkamala, S. B. & Jonnalagadda, S. B. (2016). A review on contemporary metal-organic framework materials. Inorg. Chim. Acta, 446, 61-74. https://doi.org/10.1016/j.ica.2016.02.062
Glowniak, S., Szczesniak, B., Choma, J. & Jaroniec, M. (2021). Mechanochemistry: Toward green synthesis of metal–organic frameworks. Mater. Today, 46, 109-124. https://doi.org/10.1016/j.mattod.2021.01.008
Gozali-Balkanloo, P., Marjani, A. P. & Mahoudian, M. (2024). Fabrication, characterization, and performance evaluation of polysulfone nanocomposite membranes containing different sizes of ZIF-8 to desalination and heavy metals removal from wastewater. Chem. Eng. J., 496, 153835. https://doi.org/10.1016/j.cej.2024.153835
Hu, C., Wang, X., Lan, Y., Xiao, L. & Tang, S. (2024). UiO-type MOFs catalyzed ring-opening copolymerization of epoxides and cyclic anhydrides. European Polym. J., 203, 112695. https://doi.org/10.1016/j.eurpolymj.2023.112695
Huang, Z. & Lee, H. K. (2015). Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J. Chromatogr. A, 1401, 9-16. https://doi.org/10.1016/j.chroma.2015.04.052
Ighalo, J. O., Ragabhashiyam, S. Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G. & Igwegbe, C. A. (2022). Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption-A review. J. Ind. Eng. Chem., 105, 34-48. https://doi.org/10.1016/j.jiec.2021.09.029
Keshta, B. E., Yu, H. & Wang, L. (2023). MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Separ. Purif. Technol., 322, 124301. https://doi.org/10.1016/j.seppur.2023.12430
Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev., 358, 92-107. https://doi.org/10.1016/j.ccr.2017.12.010
Lalawmpuia, R., Lalhruaitluangi, M., Lalhmunsiama & Tiwari, D. (2024). Metal organic framework (MOF): Synthesis and fabrication for the application of electrochemical sensing. Environ. Eng. Res., 29, 230636. https://doi.org/10.4491/eer.2023.636
Lawson, H. D., Walton, S. P. & Chan, Ch. (2021). Metal−organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces, 13, 7004−7020. https://dx.doi.org/10.1021/acsami.1c01089
Lee, G., Yoo, D. K., Ahmed, I., Lee, H. J. & Jhung, S. H. (2023). Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chem. Eng. J., 451, 138538. https://doi.org/10.1016/j.cej.2022.138538
Lee, Y. R., Kim, J. & Ahn, W. S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng., 30, 402-751. https://doi.org/10.1007/s11814-013-0140-6
Li, Z., Liu, M., Fang, C., Zhang, H., Liu, T., Liu, Y., Tian, H., Han, J. & Zhang, Z. (2024). Aluminium-based MOF CAU-1 facilitates effective removal of florfenicol via hydrogen bonding. J. Saudi Chem. Soc., 28, 101879. https://doi.org/10.1016/j.jscs.2024.101879
Li, N., Xu, J., Feng, R., Hu, T. & Bu, X. (2016). Governing metal-organic frameworks towards high stability. Chem. Commun., 52, 8501-8513. https://doi.org/10.1039/C6CC02931K
Liu, K. G., Bigdeli, F., Panjehpour, A., Jhung, S. H., Al Lawati, H. A. J. & Morsali, A. (2023a). Potential applications of MOF composites as selective membranes for separation of gases. Coord. Chem. Rev., 496, 215413. https://doi.org/10.1016/j.ccr.2023.215413
Liu, M., Nothling, M. D., Webley, P. A., Jin, J., Fu, Q. & Qiao, G. G. (2020). High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chem. Eng. J., 396,125328. https://doi.org/10.1016/j.cej.2020.125328
Liu, X., Shan, Y., Zhang, S., Kong, Q. & Pang, H. (2023b). Application of metal organic framework in wastewater treatment. Green Energy Environ., 8, 698-721. https://doi.org/10.1016/j.gee.2022.03.005
Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G. & Lai, C. (2019). Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev., 388, 63-78. https://doi.org/10.1016/j.ccr.2019.02.031
Lu, W., Wei, Z., Gu, Z. Y., Liu, T. F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M. & Zhou, H. C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43, 5561-5593. https://doi.org/10.1039/C4CS00003J
McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V. & Sefcik, J. (2013). Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Cryst. Growth Des., 13, 5481−5486. https://doi.org/10.1021/cg4014619
Meshram, A. A. & Sontakke, S. M. (2021). Synthesis of highly stable nanoscale MIL-53 MOF and its application for the treatment of complex mixed dye solutions and real-time dye industry effluent. Separ. Purif. Technol., 274, 119073. https://doi.org/10.1016/j.seppur.2021.119073
Monama, G. R., Hato, M. J., Ramohlola, K. E., Maponya, T. C., Mdluli, S. B., Molapo, K. M., Modibane, K. D., Iwuoha, E. I., Makgopa, K. & Teffu, M. D. (2019). Hierarchiral 4-tetranitro copper (II) phthalocyanine based metal organic framework hybrid composite with improved electrocatalytic efficiency towards hydrogen evolution reaction. Results Phys., 15, 102564. https://doi.org/10.1016/j.rinp.2019.102564
Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: a review. Polym. Bull., 79, 1-29. https://doi.org/10.1007/s00289-021-03603-2
Ogawa, T., Kenta, I., Fukushima, T. & Kajikawa, Y. (2017). Landscape of research areas for zeolites and metal-organic frameworks using computational classification based on citation networks. Materials, 10, 1428. https://doi.org/10.3390/ma10121428
Øien-Ødegaard, S., Bouchevreau, B., Hylland, K., Wu, L., Blom, R., Grande, C., Olsbye, U., Tilset, M. & Lillerud, K. P. (2016). UiO-67-type metal−organic frameworks with enhanced water stability and methane adsorption capacity. Inorg. Chem., 55,1986-1991. https://doi.org/10.1021/acs.inorgchem.5b02257
Panda, J. Sahoo, T., Swain, J., Panda, K. P., Tripathy, Ch. B., Samantaray, R. & Sahu, R. (2023). The journey from porous materials to metal-organic frameworks and their catalytic applications: a review. Curr. Org. Synth., 20, 220-237. https://doi.org/10.2174/1570179419666220223093955
Panda, J., Sahu, S. N., Pati, R., Panda, P. K., Tripathy, B. C., Payyanayak, S. K. & Sahu, R. (2020). Role of pore volume and surface area of Cu-BTC and MIL-100 (Fe) metal-organic frameworks on the loading of rifampicin: Collective experimental and docking study. Chem. Select, 5, 12398-12406. https://doi.org/10.1002/slct.202000728
Paul, A., Banga, I. K., Muthuukumar, S. & Prasad, S. (2022). Engineering the ZIF‑8 pore for electrochemical sensor applications-A mini review. ACS Omega, 7, 26993-27003. https://doi.org/10.1021/acsomega.2c00737
Perez, E., Karunaweera, C., Musselman, I., Balkus, K. & Ferraris, J. (2016). Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations. Processes, 4, 32. https://doi.org/10.3390/pr4030032
Priyadarshini, M., Das, I. & Ghangrekar, M. M. (2020). Application of metal organic framework in wastewater treatment and detection of pollutants: Review. J. Indian Chem. Soc., 97, 507-512.
Rabiee, N. (2023). Sustainable metal-organic frameworks (MOFs) for drug delivery systems. Mater. Today Commun., 35, 106244. https://doi.org/10.1016/j.mtcomm.2023.106244
Raja, D. S., Luo, J. H., Wu, C. Y., Cheng, Y. J., Yeh, C. T., Chen, Y. T., Lo, S. H., Lai, Y. L. & Lin, C. H. (2013). Solvothermal synthesis structural diversity, and properties of alkali metal-organic frameworks based on V-shaped ligands. Crys. Growth Des., 13, 3785-3793. https://doi.org/10.1021/cg400801s
Ramohlola, K. E., Monana, G. R., Hato, M. J., Modibane, K. D., Molapo, K. M., Masikini, M., Mduli, S. B. & Iwuoha, E. I. (2018). Polyaniline- metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos. В Eng., 137, 129-139. https://doi.org/10.1016/j.compositesb.2017.11.016
Remya, V. R. & Kurian, M. (2019). Synthesis and catalytic applications of metal-organic frameworks: A review on recent literature. IntNano Lett., 9, 7-29. https://doi.org/10.1007/s40089-018-0255-1
Ru, J., Wang, X., Wang, F., Cui, X., Du, X. & Lu, X. (2021). UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf., 208, 111577. https://doi.org/10.1016/j.ecoenv.2020.111577
Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S. Omidi, A. & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and applications. Trends Anal. Chem.,118, 401-425. https://doi.org/10.1016/j.trac.2019.06.007
Schukraft, G. & Petit, C. (2020). Green synthesis and engineering applications of metal-organic frameworks. Ed. Szekely,G., Livingston, A. Sust. Nanoscale Eng., Elsevier, 139-162. https://doi.org/10.1016/B978-0-12-814681-1.00006-0
Shade, D., Marszalek, B. & Walton, K. S. (2021). Structural similarity, synthesis, and adsorption properties of aluminum-based metal. Adsorption, 27, 227-236 https://doi.org/10.1007/s10450-020-00282-9
Shahid, S. & Nijmeijer, K. (2017). Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation. Separ. Purif. Technol., 189, 90-100. https://doi.org/10.1016/j.seppur.2017.07.075
Shan, M., Geng, X., Imaz, I., Broto-Ribas, A., Ortín-Rubio, B., Maspoch, D., Ansaloni, L., Peters, T. A., Tena, A., Boerrigter, M. E. & Vermaas, D. A. (2024). Metal- and covalent-organic framework mixed matrix membranes for CO2 separation: A perspective on stability and scalability. J. Membr. Sci., 691, 122258. https://doi.org/10.1016/j.memsci.2023.122258
Sran, B. S., Hwang, J. W., Chitale, S. K., Kim, J. C., Cho, K. H., Jo, D., Yoon, J. W., Lee, S. K. & Lee, U. H. (2023). Post-combustion CO2 capture of methyl and nitro mixed-linker CAU-10. MRS Communications, 13, 343–349. https://doi.org/10.1557/s43579-023-00351-4
Stock, N. & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): Route to various MOF topologies, morphologies and composites. Chem. Rev., 112, 933-969. https://doi.org/10.1021/cr200304e
Sun, W., Huo, Y., Feng, X., Wei, L., Lu, X., Liu, S. & Gao, Z. (2025). Recent advances in metal-organic frameworks (MOFs)-based colorimetric sensors for visual detection of food freshness. Coord. Chem. Rev., 535, 216638. https://doi.org/10.1016/j.ccr.2025.216638
Swan, N. B. & Zaini, M. A. A. (2019). Removal of malachite green and Congo red dyes from water by polyacrylonitrile carbon fibre sorbents. Acta Chemica Malaysia, 3, 29-34. https://doi.org/10.2478/acmy-2019-0004
Tan, P., Zou, N., Sun, J., Long, L., Li, Y. & Yu, J. (2024). Structural insights into amino-modified defective UiO-67: Enhancing phosphate adsorption through multiple active sites synergistic interactions. Colloid Surface A Physicochem. Eng. Asp., 703, 135338. https://doi.org/10.1016/j.colsurfa.2024.135338
Tanaka, S. Fuku, K., Ikenaga, N., Sharaf, M. & Nakagawa K., (2024). Recent progress and challenges in the field of metal-organic framework-based membranes for gas separation. Compounds, 4, 141-171. https://doi.org/10.3390/compounds4010007
Thair, Z., Aslam, M., Gilani, M. A., Bilad, M. R., Anjum, M. W., Zhu, L. P. & Khan A. L. (2019). -SO3H functionalized UiO-66 nanocrystals in polysulfone based mixed matrix membranes: Synthesis and application for efficient CO2 capture. Separ. Purif. Technol., 224, 524-533. https://doi.org/10.1016/j.seppur.2019.05.060
Tomar, S. & Singh, V. K. (2021). Review on synthesis and application of MIL-53. Materials Today: Proceedings, 43, 3291-3296. https://doi.org/10.1016/j.matpr.2021.02.179
Vaitsis, C., Sourkouni, G. & Argirusis, C. (2019). Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem., 52, 106-119. https://doi.org/10.1016/j.ultsonch.2018.11.004
Villegas-Fernández, M. H., Carpio-Granillo, M., Vargas-Hernández, E., Zuno-Cruz, F. J. & Sánchez-Cabrera, G. (2021). Una revisión general de las estructuras metal-orgánicas (MOF) dentro de la química inorgánica. Publicación Semestral Pädi, 8, 18-29. https://doi.org/10.29057/icbi.v8i16.5775
Wang, C., Ren, G., Wei, K., Liu, D., Wu, T., Jiang, J., Qian, J. & Pan, Y. (2021). Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chem. Eng., 2, 86-95. https://doi.org/10.1016/j.gce.2020.11.002
Wang, H., Zhao, S., Liu, Y., Yao, R., Wang, X., Cao, Y., Ma, D., Zou, M., Cao, A., Feng, X. & Wang, B. (2019). Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Commun., 10, 4204. https://doi.org/10.1038/s41467-019-12114-8
Wang, T., Zhao, P., Lu, N., Chen, H., Zhang, С. & Hou, X. (2016). Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng., 295, 403-413. https://doi.org/10.1016/j.cej.2016.03.016
Wen, J., Fang, Y. & Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. Chemosphere, 201, 627-643. https://doi.org/10.1016/j.chemosphere.2018.03.047
Wintara, J., Meshram, A., Zhu, F., Li, R., Jafar, H., Parmar, K., Liu, J. & Mu, B. (2020). Metal-organic framework-based mixed matrix membranes for gas separation: an overview. J. Polym. Sci., 58, 2518-2546. https://doi.org/10.1002/pol.20200122
Wu, T., Prasetya, N. & Li, K. (2020). Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J. Memb. Sci., 615, 118493. https://doi.org/10.1016/j.memsci.2020.118493
Yan, C., Wang, J., Zhang, F., Tian, Y., Liu, C., Zhang, F., Cao, L., Zhou, Y. & Han, Q. (2022). Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord. Chem. Rev., 468, 214595. https://doi.org/10.1016/j.ccr.2022.214595
Yang, S., Li, X., Zeng, G., Cheng, M., Huang, D., Liu, Y., Zhou, C., Xiong, W., Yang, Y., Wang, W. & Zhang, G. (2021). Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord. Chem. Rev., 438, 213874. https://doi.org/10.1016/j.ccr.2021.213874
Yang, Q., Ren, S., Zhao, Q., Lu, R., Hang, C., Chen, Z. & Zheng, H. (2017). Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J., 333, 49-57. https://doi.org/10.1016/j.cej.2017.09.099
Yin, Z., Wan, S., Yang, J., Kurmoo, M. & Zeng, M. H. (2019). Recent advances in post-synthetic modification of metal-organic frameworks: New types and tandem reactions. Coord. Chem. Rev., 378, 500-512. https://doi.org/10.1016/j.ccr.2017.11.015
Yuan, S., Qin, J.-Sh., Lollar, Ch. T. & Zhou, H. C. (2018). Stable metal−organic frameworks with group 4 Metals: Current status and trends. ACS Cent. Sci., 4, 440−450. https://doi.org/10.1021/acscentsci.8b00073
Zadehahmadi, F., Eden, N. T., Mahdavi, H., Konstas, K., Mardel, J. I., Shaibani, M., Banerjee, P. C. & Hill, M. R. (2023). Removal of metals from water using MOF-based composite adsorbents, Environ. Sci.: Water Res. Technol., 9, 1305–1330. https://doi.org/10.1039/D2EW00941B
Zeng, L., Guo, X., He, C. & Duan, C. (2016). Metal-organic frameworks: Versatile materials for heterogeneous photocatalysis. ACS Catal., 6, 7935-7947. https://doi.org/10.1021/acscatal.6b02228
Zhai, L., Zheng, X., Liu, M., Wang, X., Li, X., Zhu, X., Yuan, A., Xu, Y. & Song, P. (2023). Tuning surface functionalizations of UiO-66 towards high adsorption capacity and selectivity eliminations for heavy metal ions. Inorg. Chem. Commun., 154, 110937. https://doi.org/10.1016/j.inoche.2023.110937
Zhang, H., Hu, X., Li, T., Zhang, Y., Sun, Y., Gu, X., Gu, C. & Gao, B. (2022). MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. J. Hazard. Mater., 429, 128271. https://doi.org/10.1016/j.jhazmat.2022.128271
Zhang, X., Long, J., Wang, M., Liu, Y. & Ma, H. (2024). Using bifunctionalized NH2-UiO-66-SO3H to improve the performance of sulfonated poly (ether ether ketone) in proton exchange membranes. Inter. J. Hydrogen Energy, 61, 1495-1504. https://doi.org/10.1016/j.ijhydene.2024.02.211
Zhang, J. H., Tang, B., Xie, S. M., Wang, B. J., Zhang, M. Chen, X. L., Zi, M. & Yuan, L.M. (2018). Determination of enantiomeric excess by solid phase extraction using a chiral metal organic framework as sorbent. Molecules, 23, 2802. https://doi.org/10.3390/molecules23112802
Zhao, G., Qin, N., Pan, A., Wu, X., Peng, C., Ke, F., Iqbal, M., Ramachandraiah, K. & Zhu, J. (2019). Magnetic Nanoparticles@Metal-Organic Framework composites as sustainable environment adsorbents. J. Nanomater., 2019, 1454358. https://doi.org/10.1155/2019/1454358
Zhao, H., Huang, X., Jiang, D., Ren, P., Wang, R., Liu, Z., Li, G. & Pu, S. (2024a). Post-synthetic modification of zirconium-based metal-organic frameworks for enhanced simultaneous adsorption of heavy metal ions and organic dyes. J. Solid State Chem., 339, 124987. https://doi.org/10.1016/j.jssc.2024.124987
Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024b). Research progress in structural regulation and applications of HKUST-1 and HKUST-1 based materials. J. Alloys and Compd., 974, 172897. https://doi.org/10.1016/j.jallcom.2023.172897
Zhou, M., Ju, Z. & Yuan, D. (2018). A new metal-organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange. Chem. Commun., 54, 2998-3001. https://doi.org/10.1039/C8CC01225C
Zhuang, S., Cheng, R. & Wang, J. (2019). Adsorption of diclofenac from aqueous solution using UiO-66-type metal organic frameworks. Chem. Eng. J., 359, 354-362. https://doi.org/10.1016/j.cej.2018.11.150
Zou, D. & Liu, D. (2019). Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater. Today Chem., 12, 139-165. https://doi.org/10.1016/j.mtchem.2018.12.004
TIP Magazine Specialized in Chemical-Biological Sciences, distributed under Creative Commons License: Attribution + Noncommercial + NoDerivatives 4.0 International.

