Resumen
En esta revisión se presentan las características y propiedades de relevancia en las estructuras metal orgánicas (MOFs) y su uso potencial como materiales adsorbentes. Su naturaleza híbrida proviene de la coordinación de los enlaces entre nodos metálicos y ligandos orgánicos de los que resultan estructuras cristalinas bi o tridimensionales altamente porosas y modulables con una amplia área de superficie y grupos funcionales específicos. Estas estructuras son aptas para separar gases y remover compuestos que contaminan el agua, por medio de mecanismos de adsorción y difusión. La amplia disponibilidad de ligandos orgánicos y fuentes de iones metálicos permite el diseño de una diversidad casi finita de MOFs con porosidad y propiedades fisicoquímicas particulares. Se describen sus componentes, y los principales métodos para su síntesis son las rutas solvotermal, la sonoquímica, la mecanoquímica y la electroquímica. Asimismo, se aborda lo más sobresaliente de algunas de sus características, una descripción general que sustenta su importancia en el ámbito de la separación y adsorción de gases industriales y en la remoción de metales pesados y colorantes en un medio acuoso, al aplicarlas como un sólido adsorbente o en forma de membrana.
Citas
Abdi, J., Mahmoodi, N. M., Vossoughi, M. & Alemzadeh, I. (2019). Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems. Micropor. Mesopor. Mater., 273, 177-188. https://doi.org/10.1016/j.micromeso.2018.06.040
Adam, M. R., Othman, M. H. D., Kurniawan, T. A., Puteh, M. H., Ismail, A. F., Khongnakorn, W., Rahman, M. A. & Jaafar, J. (2022). Advances in adsorptive membrane technology for water treatment and resource recovery applications: A critical review. J. Environ. Chem. Eng., 10, 107633. https://doi.org/10.1016/j.jece.2022.107633
Adegoke, K. A., Akpomie, K. G., Okeke, E. S., Olisah, C., Malloum, A., Maxakato, N. W., Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F. & Oyedotun, K.O. (2024). UiO-66-based metal-organic frameworks for CO2 catalytic conversion, adsorption and separation. Separ. Purif. Technol., 331, 125456. https://doi.org/10.1016/j.seppur.2023.125456
Ahmed, I. & Jhung, S. H. (2014). Composites of metal-organic frameworks: Preparation and application in adsorption. Mater. Today, 17, 136-146. https://doi.org/10.1016/j.mattod.2014.03.002
Andriamitantsoa, R. S., Wang, J., Dong, W., Gao, H. & Wang, G. (2016). SO3H-functionalized metal organic frameworks: An efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv., 6, 35135-35143. https://doi.org/10.1039/C6RA02575G
Bao, S., Li, K., Ning, P., Peng, J., Jin, X. & Tang, L. (2018). Synthesis of amino-functionalization magnetic multi-metal organic framework (Fe3O4/MIL-101(AI0.9 Fe0.1)/NH2) for efficient removal of methyl orange from aqueous solution. J. Taiwan Inst. Chem. Eng., 87, 64-72. https://doi.org/10.1016/j.jtice.2018.03.009
Bayram, O., Moral, E., Köksal, E., Göde, F. & Pehlivan, E. (2023). Removal of methyl blue and malachite green from water using biodegradable magnetic Tamarindus indica fruit seed biochar: Characterization, equilibrium study, modelling and thermodynamics. Sustain. Chem. Environ., 3, 100023. https://doi.org/10.1016/j.scenv.2023.100023
Bhuyan, A. & Ahmaruzzaman, M. (2022). Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorg. Chem. Commun., 140, 109436. https://doi.org/10.1016/j.inoche.2022.109436
Bibi, R., Wei, L., Shen, Q., Tian, W., Kehinde, O., Li, N. & Zhou, J. (2017). Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks. J. Chem. Eng. Data, 62, 1615-1622. https://doi.org/10.1021/acs.jced.6b01012
Bitzer, J., Heck, S. L. & Kleist, W. (2020). Tailoring the breathing behavior of functionalized MIL- 53(Al,M)-NH2 materials by using the mixed-metal concept. Micropor. Mesopor. Mater., 308, 110329. https://doi.org/10.1016/j.micromeso.2020.110329
Cai, X., Xiw, Z., Pang, M. & Lin, J. (2019). Controllable synthesis of highly uniform nanosized HKUST-1 crystals by liquid–solid–solution method. Cryst. Growth Des., 19, 556-561. https://doi.org/10.1021/acs.cgd.8b01695
Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. (2014). Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev., 43, 5594-5617. https://doi.org/10.1039/c4cs00078a
Chen, C., Yue, J., Zhou, J., Liu, Q., Tang, Y., Chen, C. & Xiao G. (2025). Removal of Cr (VI) by coupled adsorption and photocatalytic degradation based on Ag/ZIF-8/PVDF membrane. Chem. Eng. Process. Process Intensif., 208, 110120. https://doi.org/10.1016/j.cep.2024.110120
Chen, Y., Wu, H., Liu, Z., Sun, X., Xia, Q. & Li, Z. (2018). Liquid-assisted mechanochemical synthesis of copper based MOF505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res., 57, 703-709. http://dx.doi.org/10.1021/acs.iecr.7b03712
Chen, Y. Z., Zhang, R., Jiao, L. & Jiang, H. L. (2018). Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev., 362, 1-23. https://doi.org/10.1016/j.ccr.2018.02.008
Cravillon, J., Münzer, S., Lohmeier, S. J., Feldhoff, A., Hubert, K. & Wiebcke, M. (2009). Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater., 21, 1410-1412. https://doi.org/10.1021/cm900166h
Cui, Y., Li, B., He, H., Zhou, W., Chen, B. & Qian, G. (2016). Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res., 49, 483-493. https://doi.org/10.1021/acs.accounts.5b00530
Cun, J. E., Fan, X., Pan, Q., Gao, W., Luo, K., He, B. & Pu, Y. (2022). Copper-based metal–organic frameworks for biomedical applications. Adv. Colloid Interface Sci., 305,102686. https://doi.org/10.1016/j.cis.2022.102686
Davoodi, M., Davar, F., Rezayat, M. R., Jafari, M. T. & Shalan, A. E. (2021). Cobalt metal-organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies. RSC Adv., 11, 2643. https://doi.org/10.1039/D0RA09298C
Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T. & Farha, O. K. (2014). Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev., 43, 5896-5912. https://doi.org/10.1039/C4CS00067F
Dey, C., Kundu, T., Biswal, B. P., Mallick, A. & Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function. Acta Cryst. В, 70, 3-10. https://doi.org/10.1107/S2052520613029557
Dhaka, S., Kumar, R., Deep, A., Kurade, M. B., Ji, S. W. & Jeon, B. H. (2019). Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev., 380, 330-352. https://doi.org/10.1016/j.ccr.2018.10.003
Ding, M., Cai, X. & Jiang, H. L. (2019). Improving MOF stability: Approaches and applications. Chem. Sci., 10, 10209-10230. https://doi.org/10.1039/C9SC03916C
Duan, C., Yu, Y. & Hu, H. (2022). Recent progress son synthesis of ZIF-67 based materials and their application to heterogeneous catalysis. Green Energy Environ., 7, 3-15. https://doi.org/10.1016/j.gee.2020.12.023
Elaouni, A., El Ouardi, M., Zbair, M., BaQais, A., Saadi, M. & Ahsaine, H. A. (2022). ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv., 12, 31801. https://doi.org/10.1039/D2RA05717D
Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. (2018). Flexibility in metal-organic frameworks: A fundamental understanding. Coord. Chem. Rev., 358, 125-152. https://doi.org/10.1016/j.ccr.2017.11.022
Fard, A. K., McKay, G., Buekenhoudt, A., Sulaiti, H. A., Motmans, F., Khraisheh, M. & Atieh, M. (2018). Inorganic membranes: Preparation and application for water treatment and desalination. Materials, 11, 74. https://doi.org/10.3390/ma11010074
Farha, O. K. & Hupp, J. T. (2010). Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res., 43, 1166-1175. https://doi.org/10.1021/ar1000617
Gangu, K. K., Maddila, S., Mukkamala, S. B. & Jonnalagadda, S. B. (2016). A review on contemporary metal-organic framework materials. Inorg. Chim. Acta, 446, 61-74. https://doi.org/10.1016/j.ica.2016.02.062
Glowniak, S., Szczesniak, B., Choma, J. & Jaroniec, M. (2021). Mechanochemistry: Toward green synthesis of metal–organic frameworks. Mater. Today, 46, 109-124. https://doi.org/10.1016/j.mattod.2021.01.008
Gozali-Balkanloo, P., Marjani, A. P. & Mahoudian, M. (2024). Fabrication, characterization, and performance evaluation of polysulfone nanocomposite membranes containing different sizes of ZIF-8 to desalination and heavy metals removal from wastewater. Chem. Eng. J., 496, 153835. https://doi.org/10.1016/j.cej.2024.153835
Hu, C., Wang, X., Lan, Y., Xiao, L. & Tang, S. (2024). UiO-type MOFs catalyzed ring-opening copolymerization of epoxides and cyclic anhydrides. European Polym. J., 203, 112695. https://doi.org/10.1016/j.eurpolymj.2023.112695
Huang, Z. & Lee, H. K. (2015). Micro-solid-phase extraction of organochlorine pesticides using porous metal-organic framework MIL-101 as sorbent. J. Chromatogr. A, 1401, 9-16. https://doi.org/10.1016/j.chroma.2015.04.052
Ighalo, J. O., Ragabhashiyam, S. Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G. & Igwegbe, C. A. (2022). Zeolitic imidazolate frameworks (ZIFs) for aqueous phase adsorption-A review. J. Ind. Eng. Chem., 105, 34-48. https://doi.org/10.1016/j.jiec.2021.09.029
Keshta, B. E., Yu, H. & Wang, L. (2023). MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Separ. Purif. Technol., 322, 124301. https://doi.org/10.1016/j.seppur.2023.12430
Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev., 358, 92-107. https://doi.org/10.1016/j.ccr.2017.12.010
Lalawmpuia, R., Lalhruaitluangi, M., Lalhmunsiama & Tiwari, D. (2024). Metal organic framework (MOF): Synthesis and fabrication for the application of electrochemical sensing. Environ. Eng. Res., 29, 230636. https://doi.org/10.4491/eer.2023.636
Lawson, H. D., Walton, S. P. & Chan, Ch. (2021). Metal−organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces, 13, 7004−7020. https://dx.doi.org/10.1021/acsami.1c01089
Lee, G., Yoo, D. K., Ahmed, I., Lee, H. J. & Jhung, S. H. (2023). Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chem. Eng. J., 451, 138538. https://doi.org/10.1016/j.cej.2022.138538
Lee, Y. R., Kim, J. & Ahn, W. S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng., 30, 402-751. https://doi.org/10.1007/s11814-013-0140-6
Li, Z., Liu, M., Fang, C., Zhang, H., Liu, T., Liu, Y., Tian, H., Han, J. & Zhang, Z. (2024). Aluminium-based MOF CAU-1 facilitates effective removal of florfenicol via hydrogen bonding. J. Saudi Chem. Soc., 28, 101879. https://doi.org/10.1016/j.jscs.2024.101879
Li, N., Xu, J., Feng, R., Hu, T. & Bu, X. (2016). Governing metal-organic frameworks towards high stability. Chem. Commun., 52, 8501-8513. https://doi.org/10.1039/C6CC02931K
Liu, K. G., Bigdeli, F., Panjehpour, A., Jhung, S. H., Al Lawati, H. A. J. & Morsali, A. (2023a). Potential applications of MOF composites as selective membranes for separation of gases. Coord. Chem. Rev., 496, 215413. https://doi.org/10.1016/j.ccr.2023.215413
Liu, M., Nothling, M. D., Webley, P. A., Jin, J., Fu, Q. & Qiao, G. G. (2020). High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chem. Eng. J., 396,125328. https://doi.org/10.1016/j.cej.2020.125328
Liu, X., Shan, Y., Zhang, S., Kong, Q. & Pang, H. (2023b). Application of metal organic framework in wastewater treatment. Green Energy Environ., 8, 698-721. https://doi.org/10.1016/j.gee.2022.03.005
Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G. & Lai, C. (2019). Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev., 388, 63-78. https://doi.org/10.1016/j.ccr.2019.02.031
Lu, W., Wei, Z., Gu, Z. Y., Liu, T. F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M. & Zhou, H. C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43, 5561-5593. https://doi.org/10.1039/C4CS00003J
McKinstry, C., Cussen, E. J., Fletcher, A. J., Patwardhan, S. V. & Sefcik, J. (2013). Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Cryst. Growth Des., 13, 5481−5486. https://doi.org/10.1021/cg4014619
Meshram, A. A. & Sontakke, S. M. (2021). Synthesis of highly stable nanoscale MIL-53 MOF and its application for the treatment of complex mixed dye solutions and real-time dye industry effluent. Separ. Purif. Technol., 274, 119073. https://doi.org/10.1016/j.seppur.2021.119073
Monama, G. R., Hato, M. J., Ramohlola, K. E., Maponya, T. C., Mdluli, S. B., Molapo, K. M., Modibane, K. D., Iwuoha, E. I., Makgopa, K. & Teffu, M. D. (2019). Hierarchiral 4-tetranitro copper (II) phthalocyanine based metal organic framework hybrid composite with improved electrocatalytic efficiency towards hydrogen evolution reaction. Results Phys., 15, 102564. https://doi.org/10.1016/j.rinp.2019.102564
Moradihamedani, P. (2022). Recent advances in dye removal from wastewater by membrane technology: a review. Polym. Bull., 79, 1-29. https://doi.org/10.1007/s00289-021-03603-2
Ogawa, T., Kenta, I., Fukushima, T. & Kajikawa, Y. (2017). Landscape of research areas for zeolites and metal-organic frameworks using computational classification based on citation networks. Materials, 10, 1428. https://doi.org/10.3390/ma10121428
Øien-Ødegaard, S., Bouchevreau, B., Hylland, K., Wu, L., Blom, R., Grande, C., Olsbye, U., Tilset, M. & Lillerud, K. P. (2016). UiO-67-type metal−organic frameworks with enhanced water stability and methane adsorption capacity. Inorg. Chem., 55,1986-1991. https://doi.org/10.1021/acs.inorgchem.5b02257
Panda, J. Sahoo, T., Swain, J., Panda, K. P., Tripathy, Ch. B., Samantaray, R. & Sahu, R. (2023). The journey from porous materials to metal-organic frameworks and their catalytic applications: a review. Curr. Org. Synth., 20, 220-237. https://doi.org/10.2174/1570179419666220223093955
Panda, J., Sahu, S. N., Pati, R., Panda, P. K., Tripathy, B. C., Payyanayak, S. K. & Sahu, R. (2020). Role of pore volume and surface area of Cu-BTC and MIL-100 (Fe) metal-organic frameworks on the loading of rifampicin: Collective experimental and docking study. Chem. Select, 5, 12398-12406. https://doi.org/10.1002/slct.202000728
Paul, A., Banga, I. K., Muthuukumar, S. & Prasad, S. (2022). Engineering the ZIF‑8 pore for electrochemical sensor applications-A mini review. ACS Omega, 7, 26993-27003. https://doi.org/10.1021/acsomega.2c00737
Perez, E., Karunaweera, C., Musselman, I., Balkus, K. & Ferraris, J. (2016). Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations. Processes, 4, 32. https://doi.org/10.3390/pr4030032
Priyadarshini, M., Das, I. & Ghangrekar, M. M. (2020). Application of metal organic framework in wastewater treatment and detection of pollutants: Review. J. Indian Chem. Soc., 97, 507-512.
Rabiee, N. (2023). Sustainable metal-organic frameworks (MOFs) for drug delivery systems. Mater. Today Commun., 35, 106244. https://doi.org/10.1016/j.mtcomm.2023.106244
Raja, D. S., Luo, J. H., Wu, C. Y., Cheng, Y. J., Yeh, C. T., Chen, Y. T., Lo, S. H., Lai, Y. L. & Lin, C. H. (2013). Solvothermal synthesis structural diversity, and properties of alkali metal-organic frameworks based on V-shaped ligands. Crys. Growth Des., 13, 3785-3793. https://doi.org/10.1021/cg400801s
Ramohlola, K. E., Monana, G. R., Hato, M. J., Modibane, K. D., Molapo, K. M., Masikini, M., Mduli, S. B. & Iwuoha, E. I. (2018). Polyaniline- metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction. Compos. В Eng., 137, 129-139. https://doi.org/10.1016/j.compositesb.2017.11.016
Remya, V. R. & Kurian, M. (2019). Synthesis and catalytic applications of metal-organic frameworks: A review on recent literature. IntNano Lett., 9, 7-29. https://doi.org/10.1007/s40089-018-0255-1
Ru, J., Wang, X., Wang, F., Cui, X., Du, X. & Lu, X. (2021). UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf., 208, 111577. https://doi.org/10.1016/j.ecoenv.2020.111577
Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S. Omidi, A. & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and applications. Trends Anal. Chem.,118, 401-425. https://doi.org/10.1016/j.trac.2019.06.007
Schukraft, G. & Petit, C. (2020). Green synthesis and engineering applications of metal-organic frameworks. Ed. Szekely,G., Livingston, A. Sust. Nanoscale Eng., Elsevier, 139-162. https://doi.org/10.1016/B978-0-12-814681-1.00006-0
Shade, D., Marszalek, B. & Walton, K. S. (2021). Structural similarity, synthesis, and adsorption properties of aluminum-based metal. Adsorption, 27, 227-236 https://doi.org/10.1007/s10450-020-00282-9
Shahid, S. & Nijmeijer, K. (2017). Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation. Separ. Purif. Technol., 189, 90-100. https://doi.org/10.1016/j.seppur.2017.07.075
Shan, M., Geng, X., Imaz, I., Broto-Ribas, A., Ortín-Rubio, B., Maspoch, D., Ansaloni, L., Peters, T. A., Tena, A., Boerrigter, M. E. & Vermaas, D. A. (2024). Metal- and covalent-organic framework mixed matrix membranes for CO2 separation: A perspective on stability and scalability. J. Membr. Sci., 691, 122258. https://doi.org/10.1016/j.memsci.2023.122258
Sran, B. S., Hwang, J. W., Chitale, S. K., Kim, J. C., Cho, K. H., Jo, D., Yoon, J. W., Lee, S. K. & Lee, U. H. (2023). Post-combustion CO2 capture of methyl and nitro mixed-linker CAU-10. MRS Communications, 13, 343–349. https://doi.org/10.1557/s43579-023-00351-4
Stock, N. & Biswas, S. (2012). Synthesis of metal-organic frameworks (MOFs): Route to various MOF topologies, morphologies and composites. Chem. Rev., 112, 933-969. https://doi.org/10.1021/cr200304e
Sun, W., Huo, Y., Feng, X., Wei, L., Lu, X., Liu, S. & Gao, Z. (2025). Recent advances in metal-organic frameworks (MOFs)-based colorimetric sensors for visual detection of food freshness. Coord. Chem. Rev., 535, 216638. https://doi.org/10.1016/j.ccr.2025.216638
Swan, N. B. & Zaini, M. A. A. (2019). Removal of malachite green and Congo red dyes from water by polyacrylonitrile carbon fibre sorbents. Acta Chemica Malaysia, 3, 29-34. https://doi.org/10.2478/acmy-2019-0004
Tan, P., Zou, N., Sun, J., Long, L., Li, Y. & Yu, J. (2024). Structural insights into amino-modified defective UiO-67: Enhancing phosphate adsorption through multiple active sites synergistic interactions. Colloid Surface A Physicochem. Eng. Asp., 703, 135338. https://doi.org/10.1016/j.colsurfa.2024.135338
Tanaka, S. Fuku, K., Ikenaga, N., Sharaf, M. & Nakagawa K., (2024). Recent progress and challenges in the field of metal-organic framework-based membranes for gas separation. Compounds, 4, 141-171. https://doi.org/10.3390/compounds4010007
Thair, Z., Aslam, M., Gilani, M. A., Bilad, M. R., Anjum, M. W., Zhu, L. P. & Khan A. L. (2019). -SO3H functionalized UiO-66 nanocrystals in polysulfone based mixed matrix membranes: Synthesis and application for efficient CO2 capture. Separ. Purif. Technol., 224, 524-533. https://doi.org/10.1016/j.seppur.2019.05.060
Tomar, S. & Singh, V. K. (2021). Review on synthesis and application of MIL-53. Materials Today: Proceedings, 43, 3291-3296. https://doi.org/10.1016/j.matpr.2021.02.179
Vaitsis, C., Sourkouni, G. & Argirusis, C. (2019). Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem., 52, 106-119. https://doi.org/10.1016/j.ultsonch.2018.11.004
Villegas-Fernández, M. H., Carpio-Granillo, M., Vargas-Hernández, E., Zuno-Cruz, F. J. & Sánchez-Cabrera, G. (2021). Una revisión general de las estructuras metal-orgánicas (MOF) dentro de la química inorgánica. Publicación Semestral Pädi, 8, 18-29. https://doi.org/10.29057/icbi.v8i16.5775
Wang, C., Ren, G., Wei, K., Liu, D., Wu, T., Jiang, J., Qian, J. & Pan, Y. (2021). Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chem. Eng., 2, 86-95. https://doi.org/10.1016/j.gce.2020.11.002
Wang, H., Zhao, S., Liu, Y., Yao, R., Wang, X., Cao, Y., Ma, D., Zou, M., Cao, A., Feng, X. & Wang, B. (2019). Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Commun., 10, 4204. https://doi.org/10.1038/s41467-019-12114-8
Wang, T., Zhao, P., Lu, N., Chen, H., Zhang, С. & Hou, X. (2016). Facile fabrication of Fe3O4/MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chem. Eng., 295, 403-413. https://doi.org/10.1016/j.cej.2016.03.016
Wen, J., Fang, Y. & Zeng, G. (2018). Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. Chemosphere, 201, 627-643. https://doi.org/10.1016/j.chemosphere.2018.03.047
Wintara, J., Meshram, A., Zhu, F., Li, R., Jafar, H., Parmar, K., Liu, J. & Mu, B. (2020). Metal-organic framework-based mixed matrix membranes for gas separation: an overview. J. Polym. Sci., 58, 2518-2546. https://doi.org/10.1002/pol.20200122
Wu, T., Prasetya, N. & Li, K. (2020). Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J. Memb. Sci., 615, 118493. https://doi.org/10.1016/j.memsci.2020.118493
Yan, C., Wang, J., Zhang, F., Tian, Y., Liu, C., Zhang, F., Cao, L., Zhou, Y. & Han, Q. (2022). Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord. Chem. Rev., 468, 214595. https://doi.org/10.1016/j.ccr.2022.214595
Yang, S., Li, X., Zeng, G., Cheng, M., Huang, D., Liu, Y., Zhou, C., Xiong, W., Yang, Y., Wang, W. & Zhang, G. (2021). Materials Institute Lavoisier (MIL) based materials for photocatalytic applications. Coord. Chem. Rev., 438, 213874. https://doi.org/10.1016/j.ccr.2021.213874
Yang, Q., Ren, S., Zhao, Q., Lu, R., Hang, C., Chen, Z. & Zheng, H. (2017). Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J., 333, 49-57. https://doi.org/10.1016/j.cej.2017.09.099
Yin, Z., Wan, S., Yang, J., Kurmoo, M. & Zeng, M. H. (2019). Recent advances in post-synthetic modification of metal-organic frameworks: New types and tandem reactions. Coord. Chem. Rev., 378, 500-512. https://doi.org/10.1016/j.ccr.2017.11.015
Yuan, S., Qin, J.-Sh., Lollar, Ch. T. & Zhou, H. C. (2018). Stable metal−organic frameworks with group 4 Metals: Current status and trends. ACS Cent. Sci., 4, 440−450. https://doi.org/10.1021/acscentsci.8b00073
Zadehahmadi, F., Eden, N. T., Mahdavi, H., Konstas, K., Mardel, J. I., Shaibani, M., Banerjee, P. C. & Hill, M. R. (2023). Removal of metals from water using MOF-based composite adsorbents, Environ. Sci.: Water Res. Technol., 9, 1305–1330. https://doi.org/10.1039/D2EW00941B
Zeng, L., Guo, X., He, C. & Duan, C. (2016). Metal-organic frameworks: Versatile materials for heterogeneous photocatalysis. ACS Catal., 6, 7935-7947. https://doi.org/10.1021/acscatal.6b02228
Zhai, L., Zheng, X., Liu, M., Wang, X., Li, X., Zhu, X., Yuan, A., Xu, Y. & Song, P. (2023). Tuning surface functionalizations of UiO-66 towards high adsorption capacity and selectivity eliminations for heavy metal ions. Inorg. Chem. Commun., 154, 110937. https://doi.org/10.1016/j.inoche.2023.110937
Zhang, H., Hu, X., Li, T., Zhang, Y., Sun, Y., Gu, X., Gu, C. & Gao, B. (2022). MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. J. Hazard. Mater., 429, 128271. https://doi.org/10.1016/j.jhazmat.2022.128271
Zhang, X., Long, J., Wang, M., Liu, Y. & Ma, H. (2024). Using bifunctionalized NH2-UiO-66-SO3H to improve the performance of sulfonated poly (ether ether ketone) in proton exchange membranes. Inter. J. Hydrogen Energy, 61, 1495-1504. https://doi.org/10.1016/j.ijhydene.2024.02.211
Zhang, J. H., Tang, B., Xie, S. M., Wang, B. J., Zhang, M. Chen, X. L., Zi, M. & Yuan, L.M. (2018). Determination of enantiomeric excess by solid phase extraction using a chiral metal organic framework as sorbent. Molecules, 23, 2802. https://doi.org/10.3390/molecules23112802
Zhao, G., Qin, N., Pan, A., Wu, X., Peng, C., Ke, F., Iqbal, M., Ramachandraiah, K. & Zhu, J. (2019). Magnetic Nanoparticles@Metal-Organic Framework composites as sustainable environment adsorbents. J. Nanomater., 2019, 1454358. https://doi.org/10.1155/2019/1454358
Zhao, H., Huang, X., Jiang, D., Ren, P., Wang, R., Liu, Z., Li, G. & Pu, S. (2024a). Post-synthetic modification of zirconium-based metal-organic frameworks for enhanced simultaneous adsorption of heavy metal ions and organic dyes. J. Solid State Chem., 339, 124987. https://doi.org/10.1016/j.jssc.2024.124987
Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024b). Research progress in structural regulation and applications of HKUST-1 and HKUST-1 based materials. J. Alloys and Compd., 974, 172897. https://doi.org/10.1016/j.jallcom.2023.172897
Zhou, M., Ju, Z. & Yuan, D. (2018). A new metal-organic framework constructed from cationic nodes and cationic linkers for highly efficient anion exchange. Chem. Commun., 54, 2998-3001. https://doi.org/10.1039/C8CC01225C
Zhuang, S., Cheng, R. & Wang, J. (2019). Adsorption of diclofenac from aqueous solution using UiO-66-type metal organic frameworks. Chem. Eng. J., 359, 354-362. https://doi.org/10.1016/j.cej.2018.11.150
Zou, D. & Liu, D. (2019). Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater. Today Chem., 12, 139-165. https://doi.org/10.1016/j.mtchem.2018.12.004
Se declara que los Derechos de Autor de TIP Revista Especializada en Ciencias Químico-Biológicas de la Facultad de Estudios Superiores Zaragoza, pertenecen a la Universidad Nacional Autónoma de México
TIP Revista Especializada en Ciencias Químico-Biológicas está distribuido bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Se sugiere a los Autores que una vez que su artículo esté publicado en TIP Revista Especializada en Ciencias Químico-Biológicas, aparezca en los repositorios de las Instituciones a las que están adscritos, con la finalidad de que su difusión sea más amplia.

